

Compliance Certification Application

Reference 135

Clark, D.L., D.E. Hobart, and M.P. Neu. 1995. Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry, Chem Revs. Vol. 95, 25-48.

P. 02/08

PO # 74634

- Buckau, G., Stumpe, R., nim, J.L., 1986 Americium Colloid Generation in Groundwaters and its Speciation by Laser-Induced Photoacoustic Spectroscopy," Journal of the Lessi Common Metals, Vol. 122, 355-562.
 Octu 11 x 8.50 93.50
- Buddemeier, R.W., Hunt, J.R., 1988 "Transport of Colloidal Contaminants in Groundwater: Badianucide Migration at the Nevada Test Site, Applied Geochemistry 3, 535-548, Otu 10 x15.00 150.00
- Carrera, J., Neuman, S.P., 1986 "Estimation of Paulifer Parameters Under Transient and Steadu State Conditions, 2, Uniqueness, Stability, and Solution Algorithms," Water Resources Research, 22(2), 211-227, 1986.

Qtu i1 x 15.50

- Certes, C., de Marsily, G., 1991 Application of the Pilot Plant Method to the Identification of Aquife Transmissivities, Adv. Water Resources, 14(5), 284-300, 1991.
 Qty 11 x 25.50 280.50
- Clark, D.L., Hobart, D.E., Neu, M.P., 1995 "Actinide Carbonate Complexes and Their Importance in Actinide Environmental Chemistry." Chem Revs. Vol. 95, 25-48.
 Oty 11 x 28.CO 308.00
- Cleveland, J.M., 1979 "Critical Review of Plutonium Equilbria of Environmental Concern. In Chemical Modeling in Aqueous Systems: Speciation, Solubility and Kinetics," 176th Meeting of the American Chemical Society, Miami Beach, FL, September 11-13, 1978; E.A. Jenne, Ed.: American Chemical Society Sumposium Series: 321-538. Qty 11 x 20.00 220.00
- Davis, G.B., Johnston, C.D., 1984 'Comment on Contaminant Transport in Fractured Porus Media: Phalytical Solutions for a Sustem of Parallel Fractures' by Sudicky, E.R., and Frind, E.O., 'Water Resources Research, Vol. 20, No. 9, pp. 1321-1322, Sept. 1984.
 Qtu 11x 13.50 '48.50

Actinide Carbonate Complexes and Their Importance in Actinide **Environmental Chemistry**

David L. Clark,*,1a David E. Hobart,1b and Mary P. Neu1a

Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, The Earth Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, and the G. T. Seaborg Institute for Transactinium Science, Livermore, California 94551

Received May 16, 1994 (Revised Manuscript Received September 16, 1994)

Contents

Table 1. Oxidation States of Light Actinide

1. Introduction	25
1.1. Complexation Equilibria	26
1.2. Hydrolysis	27
1.3. The Carbonate-Bicarbonate Ligand System	29
2. Carbonate Complexes of the Actinide Elements	29
2.1. Hexavalent Actinide Carbonate Complexes	29
2.1.1. Solid State and Structural Studies	29
2.1.2. Solution Chemistry	32
2.1.3. Species Distribution in Aqueous Solutions	35
2.2. Pentavalent Actinide Carbonate Complexes	36
2.2.1. Solid State and Structural Studies	36
2.2.2. Solution Chemistry	39
2.2.3. Species Distribution in Aqueous Solutions	40
2.3. Tetravalent Actinide Carbonate Complexes	41
2.3.1. Solid State and Structural Studies	41
2.3.2. Solution Chemistry	42
2.3.3. Species Distribution in Aqueous Solutions	44
2.4. Trivalent Actinide Carbonate Complexes	44
2.4.1. Solid State and Structural Studies	44
2.4.2. Solution Chemistry	44
2.4.3. Species Distribution in Aqueous Solutions	44
3. Concluding Remarks	45
4. Acknowledgments	46
5. References	46

5. References

1. Introduction

In the last decade we have dramatically increased our understanding of the chemistry of actinide elements with a potent emphasis on relevance to the environment. This flourishing chemistry of the 5f elements was stimulated by many factors, including inorganic chemists' interest in structural diversity, new synthetic methods, new chemical separations, and a need to understand the fate and transport properties of actinides in natural aquifer systems. The purpose of this review is to present the motivation behind environmentally important actinide carbonate research and to provide a modern reference in the area of actinide carbonate chemistry that reflects the developments and achievements in the field since Newton and Sullivan's thorough review of actinide carbonate solution chemistry.²

The vast majority of transuranic elements are produced in commercial nuclear reactors from uranium-based fuels.³ It was estimated that cumulative spent nuclear fuel from western nations amounted

Liemen	ts.					
Th	Pa	U	Np	Pu	Am	Cm
III (IV*)	III IV (V*)	III (IV) V (VI*)	III (IV) (V*) (VI) VII	(III) (IV*) (V) (V1) VII	(III*) IV V VI VI VII	(III*) IV

^a An asterisk indicates the most common oxidation states. and environmentally important states are in parentheses.

to approximately 38000 tons in 1985, and was predicted to reach 88500 tons in 1990.⁴ For the United States alone, it is estimated that by the year 2000 the accumulation of spent nuclear fuel will reach 40000 metric tons.⁵ The majority of this spent fuel and its decay products is expected to be stored in deep geologic repositories.³ Each repository site has its own unique conditions and intrinsic barrier properties; and the characteristics of these sites is under intense study in many countries.

The principle transport mechanism for migration of transuranic elements away from a repository is expected to be by action of water, and therefore the chemistry of transuranic elements under natural aquatic conditions is receiving a considerable amount of study. In order to understand the chemical behavior of transuranic elements in natural aquatic systems, one must consider a wide variety of complex geochemical processes such as sorption,^{6-11,53} precipitation/dissolution and redox equilibria,⁶ solubility,¹²⁻¹⁹ radiolysis,²⁰⁻³⁴ hydrolysis,^{35,36} humic acid complexation,³⁷⁻⁵² colloid generation,^{41,42,54-59} and the effects of other metal ions and other potential ligands on actinide speciation. $^{3,4,60-62}$ Each of these topics is an active area of research and to describe them all is beyond the scope of this paper. There are many reviews which provide an overview of the chemical behavior of transuranic elements in natural aquatic systems.^{3,4,60-77}

Of the 14 5f elements following actinium in the periodic table, thorium, protactinium, and uranium occur naturally.⁷⁵ On the basis of nuclear properties, availability, and distribution, only six of the 14 actinide elements (thorium, uranium, neptunium, plutonium, americium, and curium) are of long-term environmental concern.⁶⁰ The known oxidation states of these elements are listed in Table 1,60 with the most common oxidation state in aqueous solution denoted with an asterisk, and environmentally important oxidation states are in parentheses. The variety of accessible oxidation states for these ac26 Chemical Reviews, 1995, Vol. 95, No. 1

David L. Clark received a B.S. in chemistry in 1982 from the University of Washington, and a Ph.D. in inorganic chemistry in 1986 from Indiana University under the direction of Distinguished Professor Malcolm H. Chisholm. He spent a year as an SERC postdoctoral fellow at the University of Oxford with Malcolm L. H. Green before joining LANL as a J. Robert Oppenheimer Fellow in 1988 with Alfred P. Sattelberger. He became a staff member in the Isotope and Nuclear Chemistry Division at Los Alamos National Laboratory in 1989. He is presently a section leader of the Inorganic and Structural Chemistry Group at Los Alamos National Laboratory. He is a research affiliate at the Glenn T. Seaborg Institute for Transactinium Science, Livermore, CA. His research interests are in the areas of inorganic, environmental, and radiochemistry of heavy metals, including the actinides.

David E. Hobart received his B.A. degree in chemistry from Rollins College in 1971. In 1981 he received his Ph.D. in chemistry from the University of Tennessee, Knoxville, under the direction of Professor Joseph R. Peterson. David then held the position of postdoctoral research associate at the Transuranium Research Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN. He was a staff member in the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM from 1983 to 1993. He is presently the group leader of the Actinide Geochemistry Group, Earth Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA. He is a guest scientist at the Glenn T. Seaborg Institute for Transactinium Science, Livermore, CA. His research interests include actinide element aqueous solution and solid state chemistries; speciation, solubility, spectroscopy, redox behavior, thermodynamics, complexation, etc. His work is focused on actinide chemistry relevant to nuclear waste isolation and the environment.

tinides in aqueous solutions makes this chemistry rather complex. Furthermore, multiple oxidation states of the same element may exist simultaneously; plutonium, for example, may exist in four oxidation states, Pu(III), Pu(IV), Pu(V), and Pu(VI) under particular solution conditions.⁷³ A number of the known oxidation states exist only under unusual conditions, such as extreme redox potentials, radiolysis, elevated temperatures, etc.

Mary P. Neu received her B.S. in chemistry and mathematics from the University of Alaska, Fairbanks, in 1986 and her Ph.D. from the University of California, Berkeley, in 1993 under the direction of Professors Darleane C. Hoffman, and Kenneth N. Raymond. She is currently a University of California President's Postdoctoral Fellow, working with David L. Clark at Los Alamos National Laboratory. Her research interests are in the areas of inorganic, environmental, and radiochemistry of heavy metals, including the actinides.

they are released to the environment. It is convenient to divide actinide environmental contamination into categories of short- and long-term concerns for exposure and/or groundwater contamination. Shortterm concerns involve actinide isotopes which have relatively short half-lives. Dilution and natural decay will effectively ease these kinds of actinide contamination problems. Long-term environmental concerns involve long-lived actinide isotopes (halflives greater than hundreds of years) produced in large quantities which require extreme precautions in handling, isolation, and disposal.

Actinide elements released to the environment will eventually come into contact with water. Carbonate and bicarbonate are present in significant concentrations in many natural waters, and are exceptionally strong complexing agents for actinide ions. Therefore, carbonate complexes of actinide ions may play an important role in migration from a nuclear waste repository or in accidental site contamination. The potential for aquatic transport of actinides as a result of carbonate complexation is reflected in the formation of naturally occurring uranyl carbonate minerals such as rutherfordine, $UO_2(CO_3)$,⁷⁸ liebigite, $Ca_2[UO_2 (CO_3)_3$]10-11H₂O,⁷⁹ and and ersonite, Na₂Ca[UO₂- $(CO_3)_3$ -6H₂O.⁸⁰ It is our responsibility to understand and predict the fate of industrial and research byproducts, whether they originate at mines, nuclear reactor sites, or within long-term repositories of highly radioactive waste. To gain an understanding of the complex geochemical behavior of these materials, we must begin with a fundamental knowledge of actinide carbonate chemistry. Here we present a brief overview of processes basic to understanding actinide carbonate chemistry, and some general aspects of actinide chemistry such as hydrolysis and complexation equilibria.

1.1. Complexation Equilibria

Complexation is a dominant factor influencing actinide speciation in natural waters. By altering the

Actinide Carbo

actinide set tion. The effectively coordinatic are "hard" plexes wit carbonate actinides 1 trend: An Complex

variety of stants it is literature t their equil the activiti systems, m in terms o refer to equ reactions a formation written in

mM + lL -

Equilibri the presen make up t are genera solution m and zero formation zero ionic s approach k (SIT). For strength c pendix B thermodyn

A detaile and the fe actinide sp ing to pred in differing accurate th zation for nuclear en series of d thermodyn ogy and wa the chemic published.⁸

1.2. Hydrol

Hydrolys or precipits in eq 2 fo: hydrolysis: comparison to express sistent

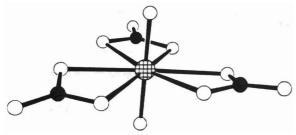
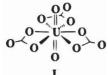



Figure 4. A ball-and-stick drawing illustrating the hexagonal bipyramidal coordination geometry found in the solid state structure of $AnO_2(CO_3)_3^{4-}$ complexes. The drawing was prepared from the fractional coordinates and unit cell parameters of synthetic andersonite, Na₂CaUO₂-(CO₃)₃·6H₂O, reported in ref 80. Hatched atoms = U; black = C; white = O.

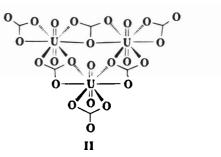
complexes display a hexagonal bipyramidal coordination geometry where three bidentate carbonate ligands lie in a hexagonal plane, and the *trans* oxo ligands occupy coordination sites above and below the plane. The complex anions display approximately D_{3h} symmetry as shown qualitatively in **I**. Typical metrical

parameters for these structures have An=O bond distances within the relatively narrow range of 1.7-1.9 Å, and An=O bonds to the carbonate oxygens in the range 2.4-2.6 Å.

$$AnO_2X_2 + 3M_2CO_3 \rightarrow M_4AnO_2(CO_3)_3 + 2MX$$

(An = U, Np, Pu; X = Cl⁻, Br⁻, NO₃⁻, ClO₄⁻, etc.)
(13)

2.1.2. Solution Chemistry


Actinyl(VI) carbonate systems are usually quite complicated in that they consist of several different complex ions in rapid equilibria with one another and with the aquo ion or hydrolyzed species. Representative examples of the solution equilibria and their thermodynamic formation constants, taken from the recent literature, are listed in Table 2.

The aqueous U(VI) carbonate system has been very thoroughly studied, and there is little doubt about the compositions of the three monomeric complexes of general formula $UO_2(CO_3)$, $UO_2(CO_3)_2^{2-}$, and $UO_2(CO_3)_3^{4-}$ present under the appropriate conditions.⁸¹ There is also a great deal of evidence from emf, solubility, and spectroscopic data supporting the existence of polymeric solution species of formulas $(UO_2)_3(CO_3)_6^{6-}$, $(UO_2)_2(CO_3)(OH)_3^{-}$, $(UO_2)_3O(OH)_2^{-}$ $(HCO_3)^+$, and $(UO_2)_{11}(CO_3)_6(OH)_{12}^{2-}$ which form only under conditions of high metal ion concentration or high ionic strength.^{81,140} Determining the formation constant for the triscarbonato uranyl monomer, $UO_2(CO_3)_3^{4-}$, is complicated because this species is in equilibrium with the hexakiscarbonato uranyl trimer, (UO₂)₃(CO₃)₆⁶⁻. Recently, Bidoglio et al. used thermal lensing spectroscopy (which is sensitive enough to allow the study of relatively dilute solutions where the trimer is not favored) to determine the equilibrium constant for the addition of one

Actinid Table Actir

carbonate to $UO_2(CO_3)_2^{2-}$ to form $UO_2(CO_3)_3^{4-}$, and used this value to calculate the formation constant, β_{13} .¹⁴³ The formation constants for the principal complexes have been determined by a large number of investigators using a wide variety of techniques, and have been critically reviewed by Grenthe *et al.*⁸¹

The trimetallic uranyl cluster $(UO_2)_3(CO_3)_6^{6-}$ has been the subject of a good deal of study, including ¹³C and ¹⁷O NMR spectroscopy, ^{131,132,135,144,145} solution X-ray diffraction, ¹³² potentiometric titration, ^{133,140,141} single-crystal X-ray diffraction, ¹³¹ and EXAFS spectroscopy in both the solid and solution states.¹³¹ The data in this area have consistently led to the proposal of a triangular cluster in solution (Figure 3) as shown qualitatively in **II**. This structural motif was proposed by Åberg on the basis of fits to solution X-ray diffraction data,¹³² and was based on the hexagonal AnO₂(CO₃) layers in the solid state structures of KAnO₂(CO₃) (An = Pu, Am),¹⁴⁶ which is a simple structural modification of the rutherfordine structure.⁷⁸

Ciavatta et al. were the first to propose the $(UO_2)_3(CO_3)_6^6$ cluster based on potentiometric (emf) titration studies.¹⁴⁷ Åberg *et al.* reported ¹³C NMR data for a sample at pH 5.7 (25 and 0 °C) which showed two ¹³C NMR resonances consistent with the structure proposed in $\mathbf{\Pi}$.¹³² Several years later, Ferri et al. reported an ¹⁷O NMR spectrum of a similar sample which displayed five ¹⁷O NMR signals between δ 1130-1095 ppm in the expected 2:2:2:1:1 ratio,¹⁴⁵ and it was argued that this ¹⁷O NMR spectrum confirmed the solution structure of $(UO_2)_3$ - $(CO_3)_6^{6-}$ as that shown in **II**. However, all five ¹⁷O resonances appeared in the uranyl (O=U=O) chemical shift region of the ¹⁷O NMR spectrum and are more consistent with five different uranyl oxygen environments. Subsequent ¹⁷O NMR studies revealed a single uranyl ¹⁷O resonance at δ 1105 ppm which is consistent with the proposed trimer structure, and the earlier assignment has been corrected.^{131,135,144}

EXAFS measurements performed at the uranium L_{III} edge for solid $[C(NH_2)_3]_6[(UO_2)_3(CO_3)_6]$, solid K₄- $[UO_2(CO_3)_3]$, and a solution of $(UO_2)_3(CO_3)_6^{6-}$ gave further support of a trimeric structure for the $(UO_2)_3(CO_3)_6^{6-}$ ion.¹³¹ Figure 5 shows the EXAFS Fourier transforms for solid K₄ $[UO_2(CO_3)_4]$ (top) and $[C(NH_2)_3]_6[(UO_2)_3(CO_3)_6]$ (bottom).¹³⁰ The EXAFS Fourier transform of $[C(NH_2)_3]_6[(UO_2)_3(CO_3)_6]$ shows five well-resolved peaks whose qualitative assignment based on the model trimeric structure II is straightforward. Peaks at 1.79, 2.45, and 2.90 Å in both transforms may be identified as distances from uranium to the uranyl oxygens, the six carbonate oxygens in the equatorial plane, and the carbonate

carbc

nyl ic

both

in (U

tribu

atom

data

 (CO_3)

is pre

one p

dista:

EXAI

NMR

trime

cyl ce

study

pluto

to the

formu

 (CO_3)

data :

0-A

AnO₂

tions

Bicar

The

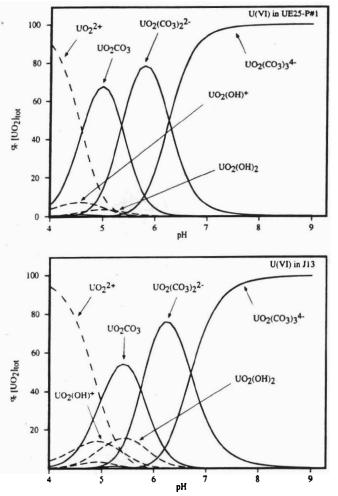


Figure 8. Calculated uranyl species distributions in carbonate solutions modeling Yucca Mountain UE25P#1 (top) and J-13 (bottom) groundwaters at 25 °C using NEA-suggested formation constants⁸¹ corrected to an ionic strength of 0.1 *m* using specific ion interaction theory. Solution conditions: (UE25P#1) [UO2²⁺] = 1 × 10⁻⁵ M, [CO3²⁻ + HCO3⁻] = 0.002 M. (J-13) [UO2²⁺] = 1 × 10⁻⁵ M, [CO3²⁻ + HCO3⁻] = 0.0114 M. Formation constants (25 °C, $I_m = 0.1 m$, log β): ML = 8.80; ML₂ = 16.10; ML₃ = 21.65; M₃L₆ = 54.05; LH = 9.1; LH₂ = 16.05. Hydrolysis constants (log K): MOH = -5.38; M(OH)₂ = -10.50; M(OH)₃ = -19.19; M(OH)₄ = -32.58; M₂(OH)₂ = -5.84; M₃(OH)₄ = -12.35; M₃(OH)₅ = -16.20; M₃(OH)₇ = -31.46; M₂(OH) = -2.48, where M = UO₂ and L = CO₃.

contain primarily sodium bicarbonate and very little other dissolved solids.^{162,163} Water samples with compositions that bracket the range of waters expected in the vicinity of Yucca Mountain have been chosen for solubility and speciation studies.¹⁶² These waters come from two sources: well J-13 and well UE25P#1. The water from well J-13 is expected to be representative of water from the unsaturated zone near the proposed emplacement area and has been recommended as a reference water. Well UE25P#1 taps the carbonate aquifer that underlies the emplacement horizon. Water from UE25P#1 has a total carbonate concentration (0.0114 M) that is approximately four times greater than J-13 (0.0028 M), and represents a reasonable upper boundary for carbonate concentrations. Calculated uranyl(VI) solution species distributions representative of these groundwater carbonate concentrations are shown in Figure 8. It is important to point out that there is no such thing as a "typical" species distribution diagram for

Clark et al.

a given ion. The concentrations and thermodynamic constants used to calculate these distributions are listed in the figure caption. From the calculated species distributions shown in Figure 8, one can see that the chemistry of the uranyl ion is markedly influenced by carbonate complexation. Monomeric uranyl carbonate species $UO_2(CO_3)$, $UO_2(CO_3)_2^{2-}$, and $UO_2(CO_3)_3^{4-}$ are expected to dominate above pH 5. and the hydrolyzed species $UO_2(OH)_3^-$ is predicted to dominate at pH values near 11.0 (not shown in Figure 8). In the absence of other complexing ligands, carbonate complexation will dominate the speciation of the uranyl ion under near-neutral pH conditions as long as there is ample carbonate-bicarbonate available. At uranyl concentrations above 1×10^{-3} M, the trimeric cluster $(UO_2)_3(CO_3)_6^{6-}$ is present in significant concentrations. When the uranyl ion concentration exceeds the carbonate concentration, hydrolysis plays an increasingly important role. This is the primary difference in the predicted species distributions between carbonate solutions representative of UE25P#1 and J-13 waters shown in Figure 8. While the actual thermodynamic binding constants vary with each metal ion, the general trends in stable species of the Np(VI) and Pu(VI) analogs are anticipated to be similar to those shown in Figure 8. Thus one would expect to see monomeric actinyl-(VI) carbonate complexes $AnO_2(CO_3)$, $AnO_2(CO_3)_2^{2^-}$, and $AnO_2(CO_3)_3^{4-}$ dominating the speciation in these waters under conditions where An(VI) ions are stable.

2.2. Pentavalent Actinide Carbonate Complexes

2.2.1. Solid State and Structural Studies

There is a large body of evidence for the existence of three different types of actinyl(V) carbonate solids of general formula $M_{(2n-1)}AnO_2(CO_3)_n$ where n = 1, 2, or 3; M is a monovalent cation; and An = Np, Pu, or Am. The lack of data on U(V) complexes is due to the relative instability of the pentavalent oxidation state of uranium in aqueous solution.⁷³ The preparation of these solids is very sensitive to the concentration of the alkali metal carbonate or bicarbonate solution used in the synthesis and to the stability of the AnO_2^+ ion. Because of the greater stability of the Np(V) oxidation state relative to other actinide ions, it is not surprising that the neptunium system is by far the most well studied and understood.

Generally, monocation salts of formula MNpO₂- (CO_3) are prepared by the addition of fairly dilute (< 0.1 M) alkali metal carbonate or bicarbonate solutions to stock solutions of the NpO_2^+ ion stabilized in dilute acid. These so-called "double carbonate" salts precipitate from solution upon standing.¹⁶⁴⁻¹⁷⁰ In order to isolate pure samples of MNpO₂- (CO_3) it is important to add the carbonate solution to the actinyl solution in order to keep the concentration of alkali carbonate to a minimum with respect to the actinyl concentration. Use of alkali carbonate solutions of higher concentrations (0.5 - 2.0 M) in the syntheses results in the formation of quasi stable solutions from which pure solids of formula M₃NpO₂- $(CO_3)_2$ precipitate overnight.¹⁷¹⁻¹⁷³ Finally, the use of a large excess of alkali carbonate (such as 50% K₂- CO_3 solutions) results in the formation of solids of general formula M5NpO2(CO3)3.174 There are also reports of the existence of these solids with varying

Figure 9. from the fr

Actinide Carb

Figure 10 structure c ref 146. H

amounts exchange of the sol vides a se For plu are addec until the or (NH₄)ľ extremel sium ame dilute acio alkali me The exact not be det peroxodis presence vided sol RbAmO₂(Like the r of alkali yield K₃A MAnO general fo Pu, and A is due lar Zacharia co-worke Solid stat tion data MAnO₂((Cs, NH4; types hav

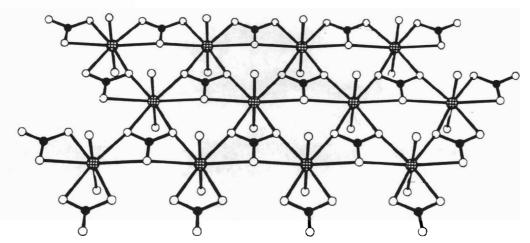
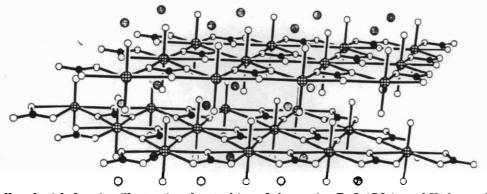



Figure 9. A ball-and-stick drawing illustrating a single $PuO_2(CO_3)$ layer in $KPuO_2(CO_3)$. The drawing was prepared from the fractional coordinates and unit cell parameters reported in ref 146. Hatched atoms = Pu; black = C; white = O.

Figure 10. A ball-and-stick drawing illustrating the stacking of alternating $PuO_2(CO_3)^-$ and K⁺ layers in the solid state structure of KPuO₂(CO₃). The drawing was prepared from the fractional coordinates and unit cell parameters reported in ref 146. Hatched atoms = Pu; light gray = K; black = C; white = O.

amounts of waters of hydration and of their cation exchange properties.¹⁷⁵ A thorough understanding of the solid state structures of the compounds provides a satisfying explanation for these results.¹⁷³

For plutonium, when solid alkali carbonate salts are added to a PuO_2^+ solution (stabilized at pH = 2) until the pH reached 7, microcrystals of $KPuO_2(CO_3)$ or $(NH_4)PuO_2(CO_3)$ precipitated. These have been extremely well characterized.¹⁷⁰ Sodium and potassium americyl(V) carbonates are prepared by heating dilute acid solutions of Am(III) and the corresponding alkali metal carbonate in solutions of hypochlorite.¹⁶⁷ The exact compositions of the resulting solids could not be determined. An analogous preparation using peroxodisulfate or ozone as chemical oxidants in the presence of rubidium or ammonium carbonate provided solids of composition $(NH_4)AmO_2(CO_3)$ and $RhAmO_2(CO_3)$, which have been well characterized.¹⁴⁶ Like the neptunium analogs, the use of a large excess of alkali carbonate in the americium reactions will yield $K_3AmO_2(CO_3)_2$ and $K_5AmO_2(CO_3)_3$ solids.

MAnO₂(CO₃). The actinyl(V) carbonate solids of general formula $MAnO_2(CO_3)$ are well known for Np, Pu, and Am. Our understanding of these structures is due largely to the pioneering efforts of Ellinger and Zachariasen in the United States¹⁴⁶ and Volkov and co-workers in the former Soviet Union.^{164–166,172,173} Solid state structures based on powder X-ray diffraction data have been determined for a wide variety of MAnO₂(CO₃) compounds where M = Na, Li, K, Rb, Cs, NH₄; and An = Np, Pu, and Am. Two structural types have been observed. depending on the size of

the univalent alkali metal cation. With the larger cations, a hexagonal structure is observed, as exemplified by $KPuO_2(CO_3)$ which crystallizes in the hexagonal space group P63/mmc with two KPuO2- (CO_3) moieties in the unit cell.¹⁴⁶ The reasonable assumptions of linear O=Pu=O and carbonate C-O distances of 1.94 and 1.28 Å allowed the other significant interactions in the structure to be deduced from the powder diffraction data. The coordination environment of the plutonyl ion is a hexagonal bipyramidal arrangement of oxygen atoms with the plutonyl units perpendicular to the hexagonal plane. Each plutonium atom forms six equatorial bonds with the oxygen atoms of three carbonate ligands in a bidentate manner with Pu-O distances of 2.55 Å. The plane of hexagonal bipyramidal plutonyl units forms an infinite layer of $PuO_2(CO_3)^-$ which differs from the layers seen in rutherfordine. Figure 9 shows a ball and stick view of the structure, emphasizing the local coordination of the plutonyl ion in a single hexagonal $PuO_2(CO_3)^-$ layer. These hexagonal layers are separated by alternating layers of alkali metal cations as shown in Figure 10. Each potassium ion in the cation layer interacts with six carbonate and six plutonyl oxygen atoms with 2.96 and 2.98 Å separations, respectively. Figure 10 illustrates how these multiple layers are staggered with respect to the position of O-Pu-O units.

In detailed studies of the corresponding neptunium(V) system, Volkov *et al.* noted a change in the crystal system from hexagonal to orthorhombic as the alkali metal cation size was decreased.¹⁶⁵ That is.

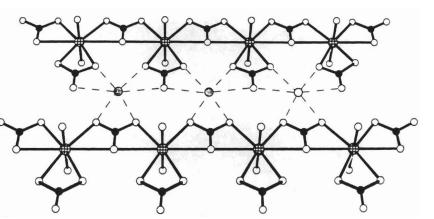
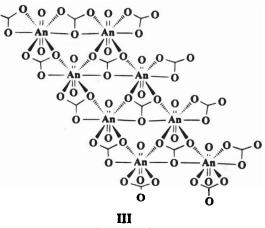



Figure 11. A ball-and-stick drawing illustrating a single $KNpO_2(CO_3)_2$ layer in the solid state structure of $K_3NpO_2(CO_3)_2$. The drawing was prepared from the fractional coordinates and unit cell parameters reported by in ref 166. Hatched atoms = Np; light gray = K; black = C; white = O.

in the series of neptunium(V) monocarbonates MNpO₂-(CO₃) with $M = Cs^+$, Rb^+ , NH_4^+ , K^+ , Na^+ , and Li⁺, a hexagonal-to-orthorhombic phase change was observed within the NpO₂(CO₃) layer at the potassiumsodium boundary. The solids maintain a layered structure, but the orthorhombic NpO₂(CO₃) sheets now have the same structure as that found in rutherfordine (Figure 1). The hexagonal and orthorhombic structures are related by displacement of the chains of actinyl units through half a translation along the crystallographic a axis, illustrated qualitatively in **III** and **IV**. The orthorhombic structure

L

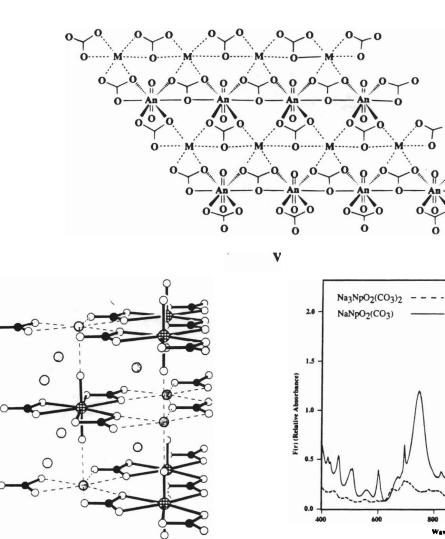
is more open than the hexagonal structure which

appears to allow for the closer contacts necessary for the smaller sodium and lithium cations.

Additional work by Volkov and co-workers demonstrated that the hexagonal structures containing potassium cations showed a definite swelling along the crystallographic c axis in the presence of water, and a corresponding shrinkage of the c axis with heating.¹⁶⁶ Thus, in the general case, the potassium monocarbonates of the pentavalent actinides have a more complex composition than just described, and may be represented by the general formula of KAnO₂-(CO₃)nH₂O with intercalated water molecules.

 $M_3AnO_2(CO_3)_2$. The actinyl(V) carbonate solids of general formula $M_3AnO_2(CO_3)_2$ (An = Np, Pu, Am, and M = Na, K, Rb) have been studied extensively by Volkov and co-workers.^{166,171,173} On the basis of powder X-ray diffraction data, these compounds are not rigorously isostructural, but the basic structural features are the same, and thus they will be described as one structural type. In the solid state, M_3AnO_2 - $(CO_3)_2$ compounds maintain the same orthorhombic layered structure as seen in $MAnO_2(CO_3)$ except that one half of the AnO_2^+ ions in the anionic carbonate layer have been replaced by alkali metal cations (M^+) ; this is shown as a ball-and-stick drawing of a single layer in Figure 11. One can envision from Figure 11 that M^+ and AnO_2^+ cations form alternating chains within the familiar hexagonal sheet and give rise to the approximate composition $[M_{0.5}(AnO_2)_{0.5}(CO_3)]$ within the layer. This is illustrated qualitatively in V (Chart 1). The cation and anion layers are now oriented such that an alkali metal cation, M^+ , lies directly above and below the linear AnO_2^+ ion of adjacent sheets (perpendicular to the layer represented in Figure 11). The anionic carbonate layer and the cationic potassium layers line up such that they are parallel to the crystallographic c axis, and this allows for an M-O-An interaction between layers. In this way, a second infinite chain of O=An=O-M-O=An=O units is formed, resulting in a maximally ordered structure. This second infinite chain is illustrated in the ball-and-stick drawing shown in Figure 12.

The observations noted above have been used by Volkov *et al.* to propose a believable unified structural theory for actinyl(V) carbonate solids.¹⁷³ The observation that alkali cations can occupy the same sites as the AnO_2^+ ions allows for a relatively straightform


solic

(CO)

Figu

 \mathbf{D}_{i}

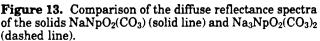

Chart 1

Figure 12. A ball-and-stick drawing illustrating the infinite stacking between $KNpO_2(CO_3)_2$ layers in the solid state structure of $K_3NpO_2(CO_3)_2$. The drawing was prepared from the fractional coordinates and unit cell parameters reported in ref 166. Hatched atoms = Np; light gray = K; black = C; and white = O.

ward explanation for the presence of nonstoichiometric solids such $M_4AnO_2(CO_3)_{2.5}nH_2O$. This solid could easily arise from further replacement of AnO₂⁺ ions in the layers by alkali metal cations, M^+ . In this way it was proposed that solids of intermediate compositions $M_{(3+2x)}AnO_2(CO_3)_{(2+x)} nH_2O$, where $0 \le x \le 0.5$, could exist while still preserving the basic structural features. In addition, it has been shown that these carbonate compounds can contain varying numbers of water molecules, yet there are no free sites in these structures to accommodate the additional water molecules. Relying on the observation that AnO_2^+ ions can be replaced by M⁺ ions in the structures, it seems reasonable that water molecules can occupy the site of the oxygen atoms of the linear AnO_2^+ unit thereby creating $H_2O-M^+-OH_2$ units along the crystallographic c axis, the axis known to swell in the presence of water. To the best of our knowledge, there are no X-ray diffraction studies reported for solids of formula M₅AnO₂(CO₃)₃.

Diffuse reflectance spectra recorded for NaNpO₂-(CO₃) and Na₃NpO₂(CO₃)₂ solids are compared in Figure 13.¹⁷⁶ The remarkable differences in the spectra of these solids can be attributed to the

significant differences in the solid state structures as noted above (see Figures 9 and 11).

2.2.2. Solution Chemistry

As might be expected based on the relative stabilities of the oxidation states of actinide ions in aqueous solution, the carbonate complexes of Np(V) have been studied most extensively.

The Raman frequencies for the symmetric stretch of NpO_2^+ , PuO_2^+ , and AmO_2^+ were measured by Madic et al. to be 767, 748, and 730 cm^{-1} , respectively.¹⁰⁸ The Raman-active ν_1 symmetric stretching frequencies of the AnO_2^+ group for actinyl(V) species in carbonate solutions show little variation as the atomic number of the actinide increases. $UO_2(CO_3)_3^{4-1}$ reduced to $UO_2(CO_3)_3^{5-}$ has a ν_1 Raman band at 759 cm^{-1} , and the NpO₂⁺ ion in 2 M carbonate solution has a v_1 Raman band at 755 cm⁻¹. The species present is thought to be $NpO_2(CO_3)_3^{5-}$. Both AmO_2^+ and PuO_2^+ in carbonate solutions have Raman bands at 755 cm⁻¹. In comparison with the ν_1 frequencies measured in acidic solutions, those in carbonate solutions show a small negative shift for v_1 of Np(V) and a positive shift for v_1 of Am(V). Madic *et al.* suggested that the differences between frequencies in noncomplexing media and in carbonate media may

Table 3. Representative Values for the Equilibrium Constants of the Carbonate Complexes of Pentavalent Actinides at Selected Ionic Strengths and 25 $^{\circ}$ C

equilibrium	Ι	$\log K$	ref
Uranyl			- H
$UO_2^+ + 3CO_3^{2-} - UO_2(CO_3)_3^{5-}$	0	$7.41(\pm 0.27)$	81
	3.0	$6.54(\pm 0.49)$	181
Neptuny	1		
$NpO_2^+ + CO_3^{2-} - NpO_2(CO_3)^-$	0	4.69(±0.13)	184
	0.1	$4.34(\pm 0.11)$	183
	0.2	$4.13(\pm 0.03)$	186
	0.5	$4.2(\pm 0.1)$	181
	1.0	$4.3(\pm 0.2)$	181
	3.0	5.09	127
	5.0 ^b	$4.71(\pm 0.04)$	185
$NpO_2^+ + 2CO_3^{2-} - NpO_2(CO_3)_2^{3-}$	0.2	$7.06(\pm 0.05)$	186
• • • • •	0.5	6.4(±0.2)	181
	1.0	$6.7(\pm 0.3)$	181
	3.0	8.15	127
	5.0%	$7.54(\pm 0.05)$	185
$NpO_2^+ + 3CO_3^{2-} - NpO_2(CO_3)_3^{5-}$	0.5	$7.8(\pm 0.3)$	181
	1.0	$8.5(\pm 0.4)$	181
	3.0	10.46	127
	5.0%	$9.63(\pm 0.05)$	185
Plutony	l		
$PuO_2^+ + CO_3^{2-} - PuO_2(CO_3)^-$	0	$5.12(\pm 0.07)$	104
	0.5	4.60(±0.04)	104
$PuO_2^+ + 3CO_3^{2-} - PuO_2(CO_3)_3^{5-}$	1^a	$10.0(\pm 2.1)$	100
Americy	1		
$AmO_2^+ + CO_3^{2-} - AmO_2(CO_3)^-$	38	4.74(±0.09)	185
$AmO_2^+ + 2CO_3^{2-} - AmO_2(CO_3)_2^{3-}$	3 ⁶	$7.42(\pm 0.03)$	185
$AmO_2^+ + 3CO_3^{2-} - AmO_2(CO_3)_3^{5-}$	3 ⁵	9.54(±0.13)	185
^a Na ₂ CO ₂ electrolyte. ^b NaCl elec	trolvte	NaClO ₄ was	used

^a Na₂CO₃ electrolyte: ^b NaCl electrolyte; NaClO₄ was used to adjust the ionic strength in all other studies.

be related to hydrogen bonding between the oxygen of the actinyl ions and water molecules.¹⁵⁴

Wester and Sullivan measured the formal potentials for the reduction of $AnO_2(CO_3)_3^{4-}$ to $AnO_2(CO_3)_3^{5-}$ in 1 M Na₂CO₃ to be -0.538, +0.445, and +0.334 V for An = U,¹⁷⁷ Np,¹⁷⁸ and Pu,¹⁷⁹ respectively. They concluded that the carbonate radical, CO₃^{*-} can oxidize any of the AnO₂CO₃)₃⁵⁻ species.

There have been a variety of studies on the thermodynamic formation constants for actinyl(V) complexes formed in carbonate media. A representative set of thermodynamic formation constants taken from the recent literature is given in Table 3.^{180–186} There is only one uranyl(V) species for which quantitative thermodynamic information is available, namely $UO_2(CO_3)_3^{5-}$. The formation constant for this species was determined on the basis of the formation constant of $UO_2(CO_3)_3^{4-}$ and the reduction potential of the equilibrium shown in eq 15.¹⁸⁰

$$UO_2(CO_3)_3^{4-} + e^- \rightarrow UO_2(CO_3)_3^{5-}$$
 (15)

There is ample spectrophotometric and solubility data supporting the formation of monomeric complex anions, NpO₂(CO₃)⁻, NpO₂(CO₃)₂³⁻, and NpO₂(CO₃)₃⁵⁻ in solution; and these correlate nicely with the known solid phase salts MNpO₂(CO₃), M₃NpO₂(CO₃)₂, and M₅NpO₂(CO₃)₃ (M = monovalent cation) which were discussed earlier. The formation constants for these species in solutions of ionic strength 0.1-3.5 m have been determined by a number of researchers using Actinic

100

80

%[NpO2lic

100

80

20

%[NpO2]10

sonably well understood (Table 3), but those for $NpO_2(CO_3)_3^{5-}$ are more scattered, and there is no consensus. The most reliable estimates come from Riglet, who examined spectrophotometric data obtained at various ionic strengths.¹⁸¹

Bennett and co-workers determined the formation constant for $PuO_2(CO_3)^-$ using photoacoustic spectroscopy (PAS), then employed the specific ion interaction theory (SIT) to calculate a formation constant at zero ionic strength (Table 3).¹⁰³ This value compares favorably with the corresponding log β_{11} for the $NpO_2(CO_3)^-$ analog (Table 3). No evidence for mixed hydroxy carbonate species was found in this study, in which hydrolysis behavior of the PuO_2^+ ion was also investigated. The formation constant for the triscarbonato species, $PuO_2(CO_3)_3^{5-}$ was determined by Lierse using the formation constant of $PuO_2(CO_3)_3^{4-}$ and the one electron reduction potential between the two species in analogy to eq 15.¹⁰⁰

Ferri, Grenthe, and Salvatore recalculated previous redox data of Bourges *et al.*¹⁸² for the AmO_2^{2+}/AmO_2^{+} redox couple in carbonate media.¹⁸⁰ This reinterpretation indicates that AmO_2^{+} forms a limiting carbonate complex $AmO_2(CO_3)_3^{5-}$ with approximately the same formation constant as found for the analogous uranyl(V) species. One problem with extrapolation of the formation constants of $AnO_2(CO_3)_3^{5-}$ to zero ionic strength arises from the strong ion pairing between cations such as Na⁺ and the pentaanion.

2.2.3. Species Distribution in Aqueous Solutions

Like the actinyl(VI) ions, only monomeric complexes are expected in natural waters due to the low ionic strengths and low metal ion concentrations expected for these waters. In addition, there is no evidence in support of polynuclear actinyl(V) carbonate complexes.

We used the thermodynamic constants for neptunyl(V) hydrolysis and carbonate complexation to produce the expected species distributions under solution conditions representative of the bounding groundwaters found at the proposed Yucca Mountain repository. Calculated neptunyl species distributions under carbonate concentrations representative of those found in UE25P#1 and J-13 groundwaters are shown in Figure 14. We reiterate that there is no such thing as a "typical" species distribution diagram for a given actinyl(V) ion. Carbonate complexation is expected to dominate the speciation for the neptunyl ion under near-neutral pH and ambient conditions as long as there are ample carbonate ions present in solution. Under these solution conditions, monomeric neptunyl carbonate species $NpO_2(CO_3)^-$. and $NpO_2(CO_3)_2^{3-}$ are expected to dominate above pH = 7, and hydrolysis to form $NpO_2(OH)$ is predicted to be unimportant, even at pH values near 11.0 (not shown in Figure 14). We also observe that the carbonate concentrations in these waters is simply not high enough to allow formation of the tris complex $NpO_2(CO_3)_3^{5-}$ and this is consistent with the observation that the tris complex is only formed in 2 M carbonate solutions. In the J-13 water, with a factor of 4 less carbonate, NpO₂(CO₃)⁻ is predicted to be the dominant species even at pH = 9. There is -------_ ---

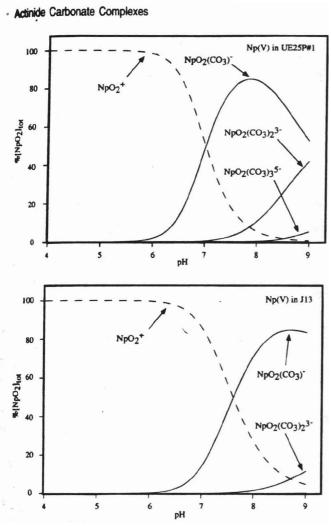
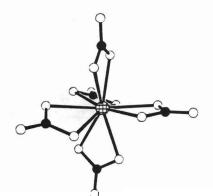


Figure 14. Calculated neptunyl species distributions in carbonate solutions modeling Yucca Mountain UE25P#1 (top) and J-13 (bottom) groundwaters at 25 °C. Np(V) carbonate binding constants were taken from Riglet,¹⁸¹ ($I_m = 0.5 m$); hydrolysis constants were taken from Neck et al.⁹⁷ ($I_m = 0.1 m$); and ligand protonation constnats were calculated for $I_m = 0.1 m$ using SIT and data from Grenthe et al.⁸¹ Solution conditions: (UE25P#1) [NpO₂+] = 1 × 10⁻⁵ M, [CO₃²⁻ + HCO₃⁻] = 0.002 M. (J-13) [NpO₂+] = 1 × 10⁻⁵ M, [CO₃²⁻ + HCO₃⁻] = 0.0114 M. Formation constants (log β): ML = 4.3; ML₂ = 6.5; ML₃ = 7.9 ($I_m = 0.5 m$); LH = 9.1; LH₂ = 16.05 ($I_m = 0.1 m$). Hydrolysis constants (log K): MOH = -11.32; M(OH)₂ = -23.42 ($I_m = 0.1 m$), where M = NpO₂ and L = CO₃.

even at pH = 9. As with uranium, when the metal ion concentration exceeds the carbonate concentration, hydrolysis will play an increasingly important role. Uranyl(V) is not expected to be stable in groundwater solutions, and the Pu(V) ion is expected to behave similarly to Np(V) for a given groundwater solution.

2.3. Tetravalent Actinide Carbonate Complexes

2.3.1. Solid State and Structural Studies


A discussion of thorium carbonate and carbonato solids has been given by Bagnall.¹⁸⁷ Simple, neutral binary thorium(IV) carbonates of formula $Th(CO_3)_2$ and $Th(CO_3)_2 \cdot nH_2O$ (n = 0.5 and 3.00-3.57) are claimed to form during the pyrolysis of $Th(C_2O_4)_2$, or by heating thorium hydroxide under CO₂ at 150 °C, respectively.¹⁸⁷ There are literature reports on solids of formula $ThO(CO_3)$ and $Th(OH)_2(CO_3) \cdot 2H_2O$, but these solids are not well characterized.¹⁸⁷ The existence of the guanidinium complexes $[C(NH_2)_3][An-(CO_3)_3]$ (An = Th, U) have also been claimed. It has been reported that addition of ethylenediammonium sulfate to uranium(IV) solutions of $(NH_4)_2CO_3$ or KHCO₃ results in the precipitation of $[C_2H_4(NH_3)_2]$ - $[U(CO_3)_3(H_2O)]^2H_2O$.¹⁸⁸ Hydrolysis of this complex occurs with dissolution to give $[C_2H_4(NH_3)_2]_2[U_2(OH)_2-(CO_3)_5(H_2O)_4]^2H_2O$ or $[C_2H_4(NH_3)_2]_2[U(OH)_2(CO_3)_2-(H_2O)_2]^2H_2O$. Tetracarbonato uranium salts of composition $[C(NH_2)_3]_4[U(CO_3)_4]$ and $[C(NH_2)_3]_3(NH_4) [U(CO_3)_4]$ have been reported.¹⁸⁸ The corresponding thorium salts with sodium or guanidinium cations have also been proposed.

The pentacarbonato salts of thorium(IV) and uranium(IV) are the most well studied of the tetravalent actinide carbonate solids. The salts of formula M6- $An(CO_3)_5 nH_2O$ (An = Th, U; M₆ = Na₆, K₆, Tl₆, [Co- $(NH_3)_6]_2$, $[C(NH_2)_3]_3[(NH_4)]_3$, $[C(NH_2)_3]_6$; n = 4-12) have all been reported.¹⁸⁹⁻¹⁹¹ The sodium salt can be prepared by chemical or electrochemical reduction of $Na_4UO_2(CO_3)_3$, followed by the addition of Na_2CO_3 to form a precipitate. The potassium salt, K₆U- $(CO_3)_5$ -6H₂O can be prepared by dissolution of freshly prepared U(IV) hydroxide in K_2CO_3 solution in the presence of CO_2 ; and the guanidinium salt can be prepared by addition of guanidinium carbonate to a warm $U(SO_4)_2$ solution, followed by cooling.¹⁸⁸ The anhydrous sodium, thallium, and guanidinium salts can be prepared by heating the hydrated salts. It is well established that the hydrated salts of formula $M_6An(CO_3)_5 nH_2O$ contain bidentate carbonate ligands and that there are no water molecules bound directly to the central metal atom. All of the uranium(IV) complexes are readily air oxidized to uranium(VI) complexes, and therefore there is no structural information for the uranium analogs. The only single-crystal X-ray diffraction studies that we are aware of are for salts of $Th(CO_3)_5{}^{6-}$ and $Th(CO_3)_6{}^{8-}.{}^{192-196,200}$

Solid plutonium(IV) carbonato complexes of general formula $M_{(2x-4)}Pu(CO_3)_x nH_2O$ have been prepared for a variety of alkali metal cations ($M = Na^+, K^+, NH_4^+$; x = 4, 5, 6, 8). The generic preparation involves dissolution of plutonium(IV) oxalate in the appropriate alkali metal carbonate solution. Addition of the resulting solution to a mixture of ethanol and water resulted in the plutonium(IV) carbonate compound adhering to the container walls, leaving the alkali carbonate and oxalate in solution. Standing in 99% ethanol or thermal dehydration converts the oil to an amorphous powder. Depending on reaction conditions, $K_4Pu(CO_3)_4nH_2O$, $K_6Pu(CO_3)_5nH_2O$, K_8Pu - $(CO_3)_{6^*}nH_2O$, and $K_{12}Pu(CO_3)_{8^*}nH_2O$ have all been reported.¹⁹⁷ These compounds are all reported as green amorphous powders which are water soluble. $K_{6}[Pu(CO_{3})_{5}]nH_{2}O$ can be isolated as brownish green crystals where n = 3 or 4. Sodium salts of formula $Na_4Pu(CO_3)_4\cdot 3H_2O$, $Na_6Pu(CO_3)_5\cdot 2H_2O$, and Na_6Pu - $(CO_3)_5$ -4H₂O have been claimed as light green crystalline compounds that appear to lose some waters of hydration and crumble upon exposure to air.¹⁹⁸ Similarly, the $(NH_4)_4Pu(CO_3)_4 H_2O$ and $[Co(NH_3)_6]_2$ -Pu(CO₃)₅·5H₂O salts have been reported.¹⁹⁹ It is difficult to evaluate many of the plutonium(IV) carbonate reports without additional characterizing data. On the basis of the crystal structures of the

C

S

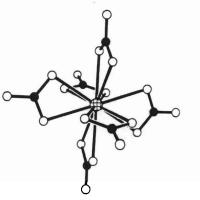
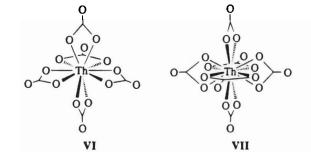


Figure 15. A ball-and-stick drawing illustrating the pseudo hexagonal bipyramidal coordination geometry of the $Th(CO_3)_5^{6-}$ anion in the solid state structure of $[C(NH_2)_3]_6$ - $[Th(CO_3)_5]$. The drawing was prepared from the fractional coordinates and unit cell parameters reported in ref 194. Hatched atoms = Th; black = C; and white = O.

analogous thorium compounds, plutonium(IV) carbonato anions of formula $Pu(CO_3)_4^{4-}$, $Pu(CO_3)_5^{6-}$, and $Pu(CO_3)_6^{8-}$ seem reasonable, but higher-order anions may well be mixtures of the plutonium(IV) carbonato complexes and alkali carbonate.


M₆An(CO₃)₅. Single crystals of Na₆Th(CO₃)₅·12H₂O were originally reported to possess monoclinic symmetry.¹⁸⁹ Two forms of this solid have since been shown to have triclinic crystal symmetry.¹⁹³⁻¹⁹⁵ The solid state structure has been determined from single-crystal X-ray diffraction data. In the solid state, the $Th(CO_3)_5^{6-}$ anion consists of a central thorium atom coordinated to 10 oxygen atoms of five bidentate carbonato ligands. The oxygen atoms are located at the vertices of an irregular decahexahedron. A ball-and-stick drawing of the solid state structure of the thorium hexaanion is shown in Figure 15. The Th-O distances range from 2.45 to 2.56 Å. After examining the solid state structure in detail, we prefer to view this complex structure as a modification of the well-known hexagonal bipyramidal coordination polyhedron seen in $AnO_2(CO_3)_3^{4-}$. Viewed in this way, the $Th(CO_3)_5^{6-}$ ion has three bidentate carbonate ligands in an approximately hexagonal plane, and two trans bidentate carbonate ligands occupying pseudo-axial positions as illustrated qualitatively in VI. The solid state structure was also reported for the guanidinium salt [C(NH₂)₃]₆- $[Th(CO_3)_5]$,¹⁹⁴ and the correct space group has been subsequently assigned.¹⁹⁶

Na₆BaTh(CO₃)₆·6H₂O. The only well-characterized actinide(IV) carbonate solid with six carbonates per metal atom is the recently reported mineral tuliokite $Na_6BaTh(CO_3)_66H_2O$, discovered in pegmatite veins of the Khibinski alkaline Massif, in the former Soviet Union.²⁰⁰ The solid state structure was determined from single-crystal X-ray diffraction data. The three-dimensional structure consists of columns of barium and thorium icosahedra which alternate along the crystallographic c axis and share common polyhedral faces. The sodium atoms are found interspersed between the barium and thorium columns. The column of thorium atoms contains discrete molecules of $Th(CO_3)_6^{8-}$ anions; the basic structural features of this ion are shown in a ball-and-stick representation in Figure 16. The imaghedral

Figure 16. A ball-and-stick drawing illustrating the icosahedral coordination geometry (virtual T_h symmetry) of the Th(CO₃)₆⁸⁻ anion in the solid state structure of tuliokite Na₆BaTh(CO₃)₆6H₂O. The drawing was prepared from the fractional coordinates and unit cell parameters reported in ref 200. Hatched atoms = Th; black = C; and white = O.

perpendicular planes formed by the trans carbonate ligands, giving virtual T_h symmetry as seen in Figure 16 and in VII. The average of the Th-O distances to the carbonate ligands is 2.62 Å, and average C-O distances are 1.30 Å.²⁰⁰ The interatomic distances between carbonate ligands and barium or sodium cations average 2.95 and 2.60 Å, respectively.²⁰⁰

2.3.2. Solution Chemistry

Whereas there is a great deal of qualitative information regarding anionic carbonate complexes of the tetravalent actinides, reliable quantitative data are rare. The most recent solution studies for thorium have been reported by Bruno et al.,⁸⁹ Grenthe et al.,⁹¹ Joâo et al.,²⁰¹ and Östhols et al.²⁰² In the study by Östhols et al., 202 the solubility of microcrystalline ThO₂ was examined as a function of pH and CO₂ partial pressure. The results were consistent with the presence of a thorium mixed hydroxo carbonato complex of formula $Th(OH)_3(CO_3)^-$ and the pentacarbonato complex $Th(CO_3)_5^{6-}$; the formation constants were determined for both species.²⁰² The observation of a mixed hydroxy carbonate complex of a readily hydrolyzable tetravalent cation is not unreasonable, since complexes of this type have been found for other ions.²⁰³ In the case of uranium, there is quantitative data only for $U(CO_3)_5^{6-}$ and $U(CO_3)_4^{4-}$.^{204,205} Ciavatta *et al.* studied the redox equilibrium shown in eq 16 by both potentiometric and spectrophotometric techniques.²⁰⁴ The standard potential for the U(IV)-U(VI) redox couple was then used to estimate the value of log β_{15} for formation of the limiting complex $U(CO_3)_5^{6-}$ in eq 17. Pratopo et al reanalyzed colubility data for uranium in a

Clark et al.

Acti Tal Act

mix (CC con A ru carl

are

N

con

solı

Np(

rece

the

mix

to e

forr

Np(

ther

(IV)

Tab

cart

diffi

Pu()

in a

the

prol

desc

tion

binc

Lier

cart

tern

of io

and

pha:

in

 \mathbf{T}

the etry) re of ared eters and

nate gure nces

2-0

nces

ium

for-

`the

аге

ium

:1.,⁹¹ 7 by

line

 CO_2

vith

iato

tac-

:on-

The

blex

not

een

iere

and

dox

tric

ard

hen

n of

o et

18

of a

9

Table 4. Representative Values for the Equilibrium Constants of the Carbonate Complexes of Tetravalent Actinides at Selected Ionic Strengths and Room Temperature

reaction	Ι	$\log K$	ref		
Thorium(IV)					
$Th^{4+} + 5CO_3^{2-} - Th(CO_3)_5^{6-}$	1.0°	$26.2(\pm 0.2)$	201		
	2.5ª	$26.3(\pm 0.2)$	201		
	3.0	32.3	202		
$ThO_{2}(s) + 4H^{+} + 5CO_{3}^{2-} - Th(CO_{3})_{5}^{6-}$	3.0	39.64(±0.4)	202		
$ThO_2(s) + H^+ + H_2O + CO_3^{2-} - Th(OH)_3(CO_3)^{-1}$	3.0	$6.78(\pm 0.3)$	202		
Ura	nium(IV)				
$U^{4+} + 5CO_3^{2-} - U(CO_3)_5^{6-}$	0	34.0(±0.9)	81		
	3.0	69.86(±0.55)	204		
$U(CO_3)_4^{4-} + CO_3^{2-} - U(CO_3)_5^{6-}$	0	$-1.12(\pm 0.22)$	205		
Neptr	inium(IV)				
$Np^{4+} + 3CO_3^{2-} - Np(CO_3)_3^{2-}$	0.3	$37.1(\pm 1.2)$	207		
$Np^{4+} + 4CO_3^{2-} - Np(CO_3)_4^{4-}$	0.3	$41.1(\pm 1.4)$	207		
$Np^{4+} + 4OH^{-} + 2CO_3^{2-} - Np(OH)_4(CO_3)_2^{4-}$	0.1	53.07(±0.44)	206		
Pluto	nium(IV)				
$Pu^{4+} + CO_3^{2-} - Pu(CO_3)^{2+}$	0.3	$17.0(\pm 0.7)$	100		
$Pu^{4+} + 2CO_3^{2-} - Pu(CO_3)_2$	0.3	29.9(±0.96)	100		
$Pu^{4+} + 3CO_3^{2-} - Pu(CO_3)_3^{2-}$	0.3	$39.1(\pm 0.82)$	100		
$Pu^{4+} + 4CO_3^{2-} - Pu(CO_3)_4^{4-}$	0.3	42.9(±0.75)	100		
$Pu^{4+} + 5CO_3^{2-} - Pu(CO_3)_5^{6-}$	0.3	$44.5(\pm 0.77)$	100		
$Pu^{4+} + 2CO_3^{2-} + 4OH^ Pu(OH)_4(CO_3)_2^{4-}$	≈0.1	46.4(±0.7)	210		
^a NH ₄ NO ₃ electrolyte. ^b K ₂ CO ₃ electrolyte, 20 °C; NaClO ₄ w	as used to adjust th	e ionic strength in all other	studies.		

mixed hydroxo carbonato complex of formula $U(OH)_{2^{-1}}(CO_3)_2^{2^{-1}}$, and proposed a value for the formation constant,²⁰⁶ but more quantitative data are needed. A representative set of thorium(IV) and uranium(IV) carbonate equilibria and their formation constants are given in Table 4.

$$UO_2(CO_3)_3^{4-} + 2e^- + 2CO_2 - U(CO_3)_5^{6-}$$
 (16)

$$U^{4+} + 5CO_3^{2-} - U(CO_3)_5^{6-}$$
 (17)

Moriyama and co-workers reported complexation constants of Np(IV) in carbonate solutions based on solubility data and suggested the formation of Np(CO₃)₃²⁻ and Np(CO₃)₄⁴⁻ in solution.²⁰⁷ More recently, Pratopo *et al.* reported a solubility study of the Np(IV) carbonate system and concluded that mixed hydroxo carbonato complexes were required to explain the data. Pratopo *et al.* proposed the formation of Np(OH)₄(CO₃)₂⁴⁻ above pH = 10, and Np(OH)₂(CO₃)₂²⁻ below pH = 10.²⁰⁶ Representative thermodynamic formation constants for neptunium-(IV) taken from the recent literature are listed in Table 4.

There is a great deal of scatter in the Pu(IV) carbonate formation constants reflecting the extreme difficulties encountered when working with aqueous Pu(IV). The Pu(IV) aquo ion is notoriously unstable in aqueous solution, being prone to rapid hydrolysisthe formation of colloidal Pu(IV) is a pervasive problem in all Pu(IV) complexation studies. Silva described spectrophotometric and complex competition experiments leading to a lower limit for the binding constant for $Pu(CO_3)^{2+}$ of log $\beta_{11} > 13.^{208}$ Lierse performed solubility studies of Pu(IV) in carbonate solutions and interpreted the results in terms of stepwise formation constants for the series of ions Pu(CO₃)²⁺, Pu(CO₃)₂, Pu(CO₃)₃²⁻, Pu(CO₃)₄⁴⁻, and $Pu(CO_3)_5^{6-}$ in analogy with the reported solid phases and these valves are given in Table 4.100 Lierse's value for the first complex formation constant of log $\beta_{11} = 17$ is many orders of magnitude

lower than the original values discussed by Newton and Sullivan² and appears to be a much more reasonable value for a monobidentate ligand complex. It is likely that the stepwise formation constants will be highly correlated and careful consideration of the mathematical and statistical details is necessary. Hobart et al. attempted to use a complexcompetition method to determine the carbonate complexation of Pu(IV) using the citrate ion.²⁰⁹ They determined that mixed hydroxo carbonato compounds of general formula $Pu(OH)_{x}(CO_{3})_{y}$ must be present, but the values for x and y could not be determined from the data.²⁰⁹ The equilibria were quite complicated and multiple mixed ligand complexes were detected. Yamaguchi et al. studied the solubility of Pu(IV) in carbonate solutions and concluded that mixed hydroxo carbonato complexes were needed in order to fit the data.²¹⁰ They interpreted their results in terms of the formation of $Pu(OH)_2(CO_3)_2^{2-}$ below pH = 10, and $Pu(OH)_4(CO_3)_2^{4-}$ at pH greater than 10^{210}

Americium(IV) is generally very unstable with respect to reduction or disproportionation in noncomplexing aqueous solutions, but it can be stabilized in carbonate solutions. Bourges and co-workers reported formal potentials for the Am(III)-Am(IV) couple in carbonate solution and concluded that there were two more carbonate ligands bound to the Am-(IV) ion than in the Am(III) complex.¹⁸² This observation prompted Grenthe and co-workers to propose the formation of Am(CO₃)₅⁶⁻ with log $\beta_{15} \approx 40$. This value agrees relatively well with that reported for the uranium analog.¹²⁷

From a perusal of the variety of proposed An(IV) carbonate species and their corresponding thermodynamic formation constants (Table 4), there is clearly no uniform, accurate model. For example, the major species for Th(IV) and U(IV) are clearly identified as Th(CO₃)₅⁶⁻ and U(CO₃)₅⁶⁻; while for Np(IV) Np(CO₃)₃²⁻ and Np(CO₃)₄⁴⁻ are proposed; while for Pu(IV) the entire series, Pu(CO₃)_n⁴⁻²ⁿ (n = 1-5), has been proposed. Clearly the widely scattered nature of the carbonate formation constants for tetravalent plutonium, and the question of whether mixed hydroxo carbonates $Pu(OH)_n(CO_3)_2^{n-}$ (n = 2 or 4) or $Pu(CO_3)_n^{4-2n}$ (n = 1-5) are the predominant solution species, illustrate the difficulty in identifying properly the solution species and determining their thermodynamic stabilities. Most studies of Th, U, Np, and Pu do indicate that mixed hydroxo carbonato complexes are important in describing the aqueous solution behavior.

2.3.3. Species Distribution in Aqueous Solutions

Thorium and plutonium are expected to be present as tetravalent ions in natural water systems. It is also quite evident from consideration of available thermodynamic data that the thorium(IV) and plutonium(IV) carbonate systems are quite complicated, and the plutonium system is in need of further study. The data for thorium(IV) indicate that the predominant Th(IV) complex in many natural waters will be $Th(CO_3)_5^{6-}$ (in the absence of ligands other than hydroxide and carbonate).²⁰² The most recent data on plutonium indicate that hydroxo carbonato complexes are likely to form; but we believe that these species are, at best, defined only as $Pu(OH)_x(CO_3)_y$, where the values of x and y have yet to be determined satisfactorily. The tendency of Pu(IV) to hydrolyze and form colloidal PuO2*2H2O will be very strong in natural waters. The present state of understanding is clearly insufficient for accurate predictions of the fate and transport of tetravalent actinide ions in natural water systems.

2.4. Trivalent Actinide Carbonate Complexes

2.4.1. Solid State and Structural Studies

The only data available for trivalent actinide carbonate solids exist for americium and curium. Americium(III) carbonate solids have been prepared by addition of a CO₂-saturated solution of NaHCO₃ to aqueous solutions of Am(III). The resulting pink precipitate was washed with a CO_2 -saturated solution. Thermogravimetric data are consistent with the formulation of Am₂(CO₃)₃·4H₂O.²¹¹ Treatment of $Am_2(CO_3)_3$ with either 0.5 M NaHCO₃ or 1.5 M Na₂-CO3 solutions produces NaAm(CO3)2*4H2O and Na3-Am(CO₃)₃·3H₂O, respectively.²¹¹ Acidified Am(III) solutions maintained under varying partial pressures of CO_2 yield solids which Runde *et al.* characterized as orthorhombic $Am(OH)(CO_3)$ or $Am_2(CO_3)_3$ based on X-ray powder diffraction data, and comparison with neodymium and europium analogs.²¹² This confirmed Silva and Nitsche's earlier characterization of solid $Am(OH)(CO_3)$, but an earlier report of a hexagonal form of Am(OH)(CO₃) could not be confirmed.213

Curium(III) carbonate solids have been prepared by addition of a Cm(III) hydrochloric acid solution to a dilute potassium carbonate solution. The solid is believed to be $Cm_2(CO_3)_3$ by analogy with americium.²¹⁴

2.4.2. Solution Chemistry

Americium(III) carbonate complexation has been studied by spectrophotometry, solubility, potentiom%[Am^{]+}[o

Table 5. Representative Values for the EquilibriumConstants of the Carbonate Complexes of TrivalentActinides at Selected Ionic Strengths and RoomTemperature

reaction	Ι	$\log K$	ref
Americium(III)			
$Am^{3+} + CO_3^{2-} - Am(CO_3)^+$	0	7.6	183
	0.1	6.69(±0.15)	215
	0.1	5.08(±0.92)	218
	0.3	6.48(±0.03)	216
	5.0ª	$5.7(\pm 0.4)$	185
$Am^{3+} + 2CO_3^{2-} - Am(CO_3)_2^{-}$	0	12.3	183
n an	0.1	$9.27(\pm 2.2)$	218
	0.3	$9.94(\pm 0.24)$	183
	5.0ª	$9.7(\pm 0.5)$	185
$Am^{3+} + 3CO_3^{2-} - Am(CO_3)_3^{3-}$	0	15.2	183
	0.1	$12.12(\pm 0.85)$	218
	5.0ª	12.9(±0.2)	185
$Am^{3+} + CO_3^{2-} + OH^{-} - Am(OH)(CO_3)$	0.1	$12.15(\pm 0.15)$	218
$Am^{3+} + 2CO_3^{2-} + OH^{-} - Am(OH)(CO_3)_2^{2-}$	0.1	$16.16(\pm 0.14)$	218
$Am^{3+} + CO_3^{2-} + 2OH^ Am(OH)_2(CO_3)^-$	0.1	$18.29(\pm 0.17)$	218
^a NaCl electrolyte; NaClO₄ was us	ed to	adjust the i	onic

^a NaCl electrolyte; NaClO₄ was used to adjust the ionic strength in all other studies.

al. used absorption spectrophotometry to determine $\log \beta_{11}$ for formation of Am(CO₃)⁺ in 0.1 M perchlorate solution.²¹⁵ Felmy and co-workers studied the solubility of Am(OH)(CO₃) over a wide range of conditions and proposed the formation of $Am(CO_3)^+$, $Am(CO_3)_2^-$, and $Am(CO_3)_3^{3-}$, consistent with the known solids.¹⁸³ Meinrath and Kim examined the absorption and photoacoustic spectroscopy of Am(III) species under a 1% CO_2 atmosphere. $Am_2(CO_3)_3$ precipitated and was found to be the solubility-controlling solid under those conditions. Parallel solubility and spectroscopic studies were performed, and the data were consistent with the formation of $Am(CO_3)^+$ and $Am(CO_3)_2^{-.216}$ Meinrath and Kim's value for log β_{11} is in good agreement with that reported by Nitsche. Bernkoff and Kim used a model containing mono-, bis-, and triscarbonato complexes as well as mixed hydroxo carbonato complexes to fit americium carbonate solubility data.²¹⁸ Giffaut and Vitorge reported evidence for radiolytic oxidation of ²⁴¹Am(III) to ²⁴¹Am-(V) under CO₂ atmospheres and indicated that the slow kinetics of precipitation can induce experimental uncertainties in solubility measurements for these intensely radioactive isotopes.²¹⁷ Representative thermodynamic formation constants for Am(III) carbonate complexes are given in Table 5. There is not sufficient direct evidence to substantiate or refute the formation of $Am(CO_3)_3^{3-}$. When the carbonate complexation constants for Am(III) carbonates are compared with the hydrolysis constants, it becomes clear (see discussion below) that hydrolysis is competitive with carbonate complexation in the trivalent americium system. This raises the question of mixed hydroxo carbonato solution species and implies that more data is needed in this area.

2.4.3. Species Distribution in Aqueous Solutions

Americium(III) and curium(III) are the only trivalent actinides expected to be present at significant concentrations in natural waters systems. We used the thermodynamic formation constants for americium(III) hydrolysis and carbonate complexation to produce the expected species distributions under solution conditions representative of groundwater

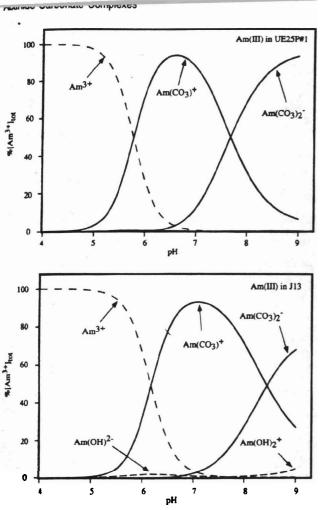


Figure 17. Calculated americium(III) species distributions in carbonate solutions modeling Yucca Mountain UE25P#1 (top) and J-13 (bottom) groundwaters at 25 °C. Am(III) carbonate formation constants were taken from Meinrath and Kim;²¹⁶ hydrolysis constants were taken from Stadler and Kim;²³ and ligand protonation constants calculated from SIT using data from Grenthe *et al.*⁸¹ All constants are for 0.1 *m* ionic strength. Solution conditions: (UE25P#1) $[Am^{3+}] = 1 \times 10^{-8}$ M, $[CO_3^{2-} + HCO_3^{-}] = 0.002$ M; (J-13) $[Am^{3+}] = 1 \times 10^{-8}$ M, $[CO_3^{2-} + HCO_3^{-}] = 0.0114$ M. Formation constants (log β): ML = 6.48; ML₂ = 9.94; LH = 9.1; LH₂ = 16.05. Hydrolysis constants (log K): MOH = -7.46; M(OH)₂ = -15.32; M(OH)₃ = -26.88, where M = Am and L = CO₃.

repository. Calculated Am(III) species distributions for carbonate solutions representative of UE25P#1 and J-13 groundwater solutions are shown in Figure 17. Thermodynamic constants and solution conditions used in the calculations are included in the figure caption. From the calculated Am(III) species distributions, it is clear once again that the chemistry of the trivalent actinide ion is markedly influenced by carbonate complexation at low metal ion concentrations. Monomeric americium carbonate species $Am(CO_3)^+$, and $Am(CO_3)_2^-$ are expected to dominate above pH 6, and hydrolysis to form $Am(OH)_2^+$ is predicted to dominate at high pH values near 11.0 (not shown in Figure 17). We did not include the tris complex $Am(CO_3)_3^{3-}$, because its identity is not well defined. In the J-13 water, with a factor of 4 less carbonate than UE25P#1, the concentrations of Am- $(CO_3)^+$ and $Am(CO_3)_2^-$ are predicted to be approximately equal near pH 8.5, while this change in the dominant species would occur at nearly pH 7.5 in the more carbonaceous UE25P#1 water. Carbonate complexation is expected to dominate the speciation for the Am(III) ion under near-neutral pH conditions as long as there are ample carbonate ions present in solution.

3. Concluding Remarks

Both carbonate and hydroxide strongly complex actinide ions and will affect the mobility of actinide ions in natural groundwater systems. Therefore, identification of the carbonate complexes and determination of the thermodynamic parameters associated with their formation is a crucial area of study. A great deal of new data on actinide carbonate complexes has appeared since the critical solution chemistry review by Newton and Sullivan.² Advances in the last decade can be attributed, in part, to the application of many new techniques for the study of actinide speciation including, photothermal (PAS, PTL)²¹⁹⁻²³¹ and laser-induced fluorescence (LIF) spectroscopies,^{224,228,232} extended X-ray absorption fine structure (EXAFS),¹³¹ laser resonance ionization mass spectroscopy,²³³ improved trace analyses,²³⁴ combined extraction methods,^{183,225} and NMR spectroscopy.^{131,132,145,159} It is expected that further applications of these new techniques will greatly expand our understanding of these systems in the future.

In general, actinyl(VI) carbonate systems are quite complicated in that they consist of several complex ions in rapid equilibria with one another and with the aquo ion or hydrolyzed species. In the solid state, $AnO_2(CO_3)$, $M_6(AnO_2)_3(CO_3)_6$, and $M_4AnO_2(CO_3)_3$ are well characterized for uranium, while the analogous neptunium and plutonium solids are not as well defined, and the americium solids are unknown. In aqueous solution there is little doubt that the important species are $AnO_2(CO_3)$, $AnO_2(CO_3)_2^{2-}$, AnO_2 - $(CO_3)_3^{4-}$, and $(AnO_2)_3(CO_3)_6^{6-}$ (for An = U, Np, and Pu). For uranyl there is also a great deal of evidence for additional polymeric species $(UO_2)_2(CO_3)(OH)_3^-$, $(UO_2)_3O(OH)_2(HCO_3)^+$, and $(UO_2)_{11}(CO_3)_6(OH)_{12}^{2^2}$ the corresponding neptunyl, plutonyl, and americyl carbonate systems need further study.

Pentavalent actinide carbonate solids of general formula $M_{(2n-1)}AnO_2(CO_3)_n$ (n = 1 or 2, M is a monovalent cation, and An = Np, Pu, or Am) havebeen structurally characterized, and a unified pictureof these salts has been presented. In aqueous solu $tion, the carbonato complexes <math>AnO_2(CO_3)_n^{(2n-1)-}$ (n =1, 2, or 3, An = Np, Pu, or Am) have been observed. Consistent quantitative data are available for all three monocarbonato complexes and for the biscarbonato neptunyl complex.

Tetravalent actinide carbonate solids have only been well studied for thorium and uranium. Only pentacarbonato and hexacarbonato salts of formula $M_6An(CO_3)_5nH_2O$ (An = Th, U) and Na₆BaTh-(CO₃)₆6H₂O have been structurally characterized. The aqueous solution chemistry of the tetravalent actinide carbonate complexes is extremely complex. Thermodynamic data are widely scattered, and the question remains whether mixed hydroxo carbonato complexes $An(OH)_n(CO_3)_2^{n-1}$ (n = 2 or 4) or $An(CO_3)_n^{4-2n}$ (n = 1-5) are the predominant solution species. There are recent data which support the formation of Th(OH)_3(CO_3)^- and Th(CO_3)_5^{6-} as the only important solution species, and also data which suggest that complexes of formula An(OH)_x- $(CO_3)_{y}^{(2y+x-4)-}$ are important U, Np, and Pu solution species.

The compositions of trivalent actinide carbonate solids are well established, but structural details are not known. In aqueous solution, there is evidence for the stepwise formation of $An(CO_3)^+$, $An(CO_3)_2^-$, and $An(CO_3)_3^{3-}$ for An = Am and Cm, but the question of mixed hydroxo carbonato solution species remains unanswered.

Clearly there are many areas of actinide carbonate research that require further study to define the nature of contaminants, to predict how actinides may behave in natural systems, to explore alternative methods for industrial processes and effluent treatment, to find acceptable methods for remediation and transuranic waste storage, and to manage responsibly the transuranic elements so their unique properties may be utilized.

4. Acknowledgments

We thank Drs. Thomas W. Newton, James C. Sullivan, C. Drew Tait, and Wolfgang Runde, for helpful discussion; Dr. P. Vitorge for a copy of C. Riglet's thesis (ref 181); and Claudette C. Trujillo for technical assistance. We are grateful for sponsorship by the Office of Basic Energy Scienes, Division of Chemical Sciences, U.S. Department of Energy under contract W-7405-ENG-36 and DE-AC03-76SF00098 with the University of California, and by the Yucca Mountain Site Characterization Project Office as part of the Civilian Radioactive Waste Management Program managed by the U.S. Department of Energy, Nevada Operations Office. M. P. Neu is the recipient of a University of California President's Postdoctoral Fellowship.

5. References

- (1) (a) Los Alamos National Laboratory, Mail Stop G739. (b) Lawrence Berkeley Laboratory, Mail Stop 70A-1150.
- Newton, T. W.; Sullivan, J. C. In Handbook on the Physics and Chemistry of the Actinides; Freeman, A. J., Keller, C., Eds.; Elsevier Science Publishers, B. V.: Amsterdam, 1986, Chapter 10, p 387.
- Dozol, M.; Hagemann, R. Pure Appl. Chem. 1993, 65, 1081.
 Kim, J. I. In Handbook on the Physics and Chemistry of the Actinides; Freeman, A. J., Keller, C., Eds.; Elsevier Science Publishers, B. V., 1986; Chapter 8, p 413.
- Managing The Nations Nuclear Waste. DOE report, DOE/RW-0263P; 1990. (5)
- (6)Meece, D. E.; Benninger, L. K. Geochim. Cosmochim. Acta 1993, 57. 1447
- (7) Bell, J.; Bates, T. H. Sci. Total Environ. 1988, 69, 297.
 (8) Allard, B.; Olofsson, U.; Torstenfelt, B.; Kipatsi, H Svensk Kärnbränsleförsörjning AB, Stockholm, Report KBS TR 83-61, 1983
- Combes, J.-M.; Chisholm-Brause, C. J.; Brown, G. E.; Parks, G. A.; Conradson, S. D.; Eller, P. G.; Triay, I. R.; Hobart, D. E.; Meijer, A. Environ. Sci. Technol. 1992, 26, 376.
- (10) Sanchez, A. L.; Murray, J. W.; Sibley, T. H. Geochim. Cosmochim. Acta 1985, 49. 2297.
- (11) Berry, J. A.; Bond, K. A.; Ferguson, D. R.; Pilkington, N. J. Radiochim. Acta 1991, 52/53, 201.
- (12) Nitsche, H. Radiochim. Acta 1991, 52/53, 3.
- (13) Nitsche, H. Mater. Res. Soc. Symp. Proc. 1991, 212, 517.
 (14) Nitsche, H.; Edelstein, N. M. Radiochim. Acta 1985, 39, 23.
- (15) Nitsche, H.; Standifer, E. M.; Lee, S. C.; Gatti, R. C.; Tucker, D.
- B. Lawrence Berkeley Laboratory Report LBL-27157, 1987. Nitsche, H.; Müller, A.; Standifer, E. M.; Deinhammer, R. S.; Becraft, K.; Prussin, T.; Gatti, R. C. Radiochim. Acta 1992, 58/ (16)59, 27.
- (17) Choppin, G. R. Marine Chem. 1989, 28, 19.

- (20) Kim, J. I.; Lierse, Ch.; Sullivan, J. C. Radiochim. Acta 1993, 60, 99.
- (21) Vlaimirova, M. V. J. Radioanal. Nucl. Chem. 1990, 143, 445.
- (22) Frolov, A. A.; Andreychuk, N. N.; Rotmanov, K. V.; Frolova, L. M.; Vasiliev, V. Ya. J. Radioanal. Nucl. Chem. 1990, 143, 433.
- (23) Stadler, S.; Kim, J. I. Radiochim. Acta 1988, 44/45, 39. (24) Büpplemann, K.; Kim, J. I.; Lierse, C. Radiochim. Acta 1988,
- 44/45, 65. (25) Christensen, H.; Bjergbakke, E. Mater. Res. Soc. Symp. Proc.
- 1985, 50, 401.
- (26) Neretnieks, I. Svensk Kärnbränsleförsörjning AB, Report KBS (20) Nerethess, I. Svensk Kallbranskorsoljining AB, Report RBS TR 82-16, Stockholm, 1982.
 (27) Eriksen, T. E.; Ndalamba, P.; Christensen, H.; Bjergbakke, E. J. Radioanal. Nucl. Chem. 1989, 132, 19.
- (28) Golub, D.; Cohen, H.; Meyerstein, D. J. Chem. Soc., Dalton Trans. 1985, 641
- (29) Lierse, C.; Schmidt, K. H.; Sullivan, J. C. Radiochim. Acta 1988, 44/45, 71.
- (30) Gordon, S.; Mulac, W. A.; Schmidt, K. A.; Sjoblom, R. K.; Sullivan, J. C. Inorg. Chem. 1978, 17, 294.
- Sunder, S.; Shoesmith, D. W.; Christensen, H.; Miller, N. H.; (31) Bailey, M. G. Mater. Res. Soc. Symp. Proc. 1990, 176, 457.
 (32) Newton, T. W. The Kinetics of the Oxidation-Reduction Reactions
- of Uranium, Neptunium, Plutonium, and Americium in Aqueous Solutions. ERDA Critical Review Series, ERDA Technical Information Center: Oak Ridge, TN, 1975; available as TID-26506.
- (33) Pashalidas, I.; Kim, J. I.; Lierse, C.; Sullivan, J. C. Radiochim. Acta, 1993, 60, 99
- (34) Serebrennikova, N. V.; Volcheck, I. M.; Antonevich, A. G. Izv.
- (37) Gerebrennikova, H. v.; voicneck, I. M.; Antonevich, A. G. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Teknol. 1989, 32, 37.
 (35) Baes, C. F., Jr.; Mesmer, R. E. The Hydrolysis of Cations; New York: Wiley, 1976.
- (36) Fuger, J. Radiochim. Acta 1992, 59, 81.
- (37) Andersson, K. Mater. Res. Soc. Symp. Proc. 1989, 127 (Sci Basis Nucl. Waste Manag. 12) 693.
- Olofsson, U.; Allard, B. Svensk Kärnbränsleförsörjning AB, Stockholm, Report KBS TR 83-09, 1983. (38)
- (39) Lieser, K. H.; Ament, A.; Hill, R.; Singh, R. N.; Stingl, U.; Thybusch, B. Radiochim. Acta 1990, 49, 83
- (40) Moulin, V.; Robouch, P.; Vitorge, P.; Allard, B. Radiochim. Acta 1988, 44/45, 33.
- (41) Moulin, V.; Tits, J.; Ouzounian, G. Radiochim. Acta 1992, 58/ 59, 179.
- (42) Kim, J. I.; Buckau, G.; Bryant, E.; Klenze, R, Radiochim. Acta 1989, 48, 135.
- Torres, R. A.; Choppin, G. R. Radiochim. Acta 1984, 35, 143. (43)
- (44) Bertha, E.; Choppin, G. R. J. Inorg. Nucl. Chem. 1978, 40, 655.
- (45) Moulin, E.; Robouch, P.; Vitorge, P. Inorg. Chim. Acta 1987, 140, 303.
- (46) Kim, J. I.; Rhee, D. S.; Buckau, G. Radiochim. Acta 1991, 52/ 53, 49.
- (47) Norden, M.; Albinsson, Y.; Ephraim, J. H.; Allard, B. Mater. Res. Soc. Symp. Proc. 1993, 294, 759.
- Maes, A.; De Brabandere, J.; Cremers, A. Radiochim. Acta 1991, (48)52/53, 41.
- (49) Kim, J. I.; Sekine, T. Radiochim. Acta 1991, 55, 187.
- (50) Kim, J. I.; Wimmer, H.; Klenze, R. Radiochim. Acta 1991, 54, 35.
- (51) Minai, Y.; Choppin, G. R.; Sisson, D. H. Radiochim. Acta 1992, 56, 195.
- (52) Choppin, G. R.; Cacheris, W. P. J. Less-Common Met. 1986, 122, 551.
- (53) Hirose, K.; Tanoue, E. Geochim. Cosmochim. Acta 1994, 58, 1.
- (54) Ramsay, J. D. F. Radiochim. Acta 1988, 44/45, 165.
- (55) Hobart, D. E.; Morris, D. E.; Palmer, P. D.; Newton, T. W. Proceedings of the Topical Meeting on Nuclear Waste Isolation in the Unsaturated Zone: FOCUS '89, U.S. DOE, Las Vegas,
- NV, 1989; p 118. (56) Newton, T. W.; Hobart, D. E.; Palmer, P. D. Radiochim. Acta,
- (57) Rundberg, R. S.; Mitchell, A. S.; Triay, I. R.; Torstenfelt, N. B. Mater. Res. Soc. Symp. Proc. 1988, 112, 243. (58) Triay, I. R.; Hobart, D. E.; Mitchell, A. J.; Newton, T. W.; Ott,
- M. A.; Palmer, P. D.; Rundberg, R. S.; Thompson, J. L. Radiochim. Acta 1991, 52/53, 127.
- (59) Thiyagarajan, P.; Diamond, H.; Soderholm, L.; Horwitz, E. P.; Toth, L. M.; Felker, L. K. Inorg. Chem. 1990, 29, 1902.
 (60) Hobart, D. E. Proc. Robert A. Welch Found. Conf. Chem. Res.
- 1990, 34, 379.
- (61) Kim, J. I. Mater. Res. Soc. Symp. Proc. 1993, 294, 3.
- (62) Grenthe, I. Mater. Res. Soc. Symp. Proc. 1988, 112, 73.
 (63) Lieser, K. H.; Hill, R.; Mühlenweg, U.; Singh, R. N.; Shu-de, T.; Steinkopff, T. J. Radioanal. Nucl. Chem. 1991, 147, 117.
- (64) Lieser, K. H.; Hill, R. Radiochim. Acta 1992, 56, 141.
- Reed, D. T.; Zachara, J. M.; Woldung, R. E.; Wobber, F. J. Mater. Res. Soc. Symp. Proc. 1991, 212, 765. (65)
- (66) Fuger, J. J. Nucl. Mater. 1993, 201, 3.
- (67) Allard, B.; Kipatsi, H.; Liljenzin, J. O. J. Inorg. Nucl. Chem.

Actini (69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85) (86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95) \$

(96) 1

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108) N

(109)V

(110)S

(111) P

(112) P

(113) B

(114) F

(115) B

(116) M

- Actinide_Carbonate Complexes

- (69) Caceci, M. S. Metal Speciation in the Environment; Broekaert, J/A. C.; Gucers, S.; Adams, Eds; NATO ASI Series G23 Springer-Verlag: Berlin, 1990; p 571.
- (70) Musikas, C. J. Less-Common Met. 1986, 122, 107.
- (71) Grauby, A.; Foulquier, L.; Colle, C.; Baudin-Juelent, Y.; Saas, A.; Morello, M. J. Less-Common Met. 1986, 122, 499
- (72) Choppin, G. R. Eur. J. Solid State Inorg. Chem. 1991, 28, 319.
 (73) Katz, J. J.; Seaborg, G. T.; Morss, L. R. The Chemistry of the Actinide Elements; Chapman and Hall: London, 1986.
- (74) Lieser, K. H.; Muhlenweg, U. Radiochim. Acta 1988, 43,27.
 (75) Seaborg, G. T.; Loveland, W. D. The Elements Beyond Uranium; Wiley Interscience: New York, 1990. (76) Nitsche, H. Presented at the Second International Conference
- on Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere; Monterey, CA 6-10 Nov 1985; also LBL Report #27173, 1989.
- (77) Ivanov, I. A.; Sedov, V. M.; Gulin, A. N.; Shatkov, V. M.; Shashukov, E. A. J. Radioanal. Nucl. Chem. 1991, 147, 191.
- Christ, C. L.; Clark, J. R.; Evans, H. T., Jr. Science 1955, 121, (78)472
- (79) Apelman, D. Bull. Geol. Soc. Am. 1956, 67, 1666.
- (80) Coda, A.; Della Giusta, A.; Tazzoli, V. Acta. Crystallogr. 1981, B37, 1496.
- (81) Grenthe, I.; Fuger, J.; Konigs, R. J. M.; Lemire, R. J.; Muller, A. B.; Nguyen-Trung, C.; Wanner, H. Chemical Thermodynamics of Uranium; Elsevier Science Publishing Company, Inc.: North-Holland, 1992; Vol. 1. (82) Shannon, R. D. Acta Crystallagr. B 1976, 32, 751.
- (83) Moon, H. Bull. Korean Chem. Soc. 1989, 10, 270.
- (84) Lieser, K. H.; Hill, R. Radiochim. Acta 1992, 56, 37.
- (85) Engkvist, I.; Albinsson, Y. Radiochim. Acta 1992, 58/59, 109. (86) Davydov, Yu. P.; Toropov, I. G. Dokl. Akad. Nauk Belarusi 1992,
- 36, 229.
- (87) Milic, N. B.; Suranji, T. M. Can. J. Chem. 1982, 60, 1298
- (88) Brown, P. L.; Ellis, J.; Sylva, R. N. J. Chem. Soc., Dalton Trans 1983. 31.
- (89) Bruno, J.; Casas, I.; Grenthe, I.; Lagerman, B. Inorg. Chim. Acta 1987, 140. 299.
- (90) Ryan, J. L.; Rai, D. Inorg. Chem. 1987, 26, 4140.
- (91) Grenthe, I.; Lagerman, B. Acta Chem. Scand. 1991, 45, 231.
- (92) Rai, D.; Felmy, A. R.; Ryan, J. L. Inorg. Chem. 1990, 29, 260.
 (93) Sullivan, J. C.; Hindman, J. C. J. Phys. Chem. 1959, 63, 1332.
- (94) Rai, D.; Ryan, J. L. Inorg. Chem. 1985, 24, 247.
 (95) Sullivan, J. C.; Choppin, G. R.; Rao, L. F. Radiochim. Acta 1991,
- 54, 17. (96) Itagaki, H.; Nakayama, S.; Tanka, S.; Yamawaki, M. Radiochim.
- Acta, 1992, 58/59, 16. (97) Neck, V.; Kim, J. I.; Kanellakopulos, B. Radiochim. Acta 1992,
- 56, 25. (98) Cassol, A.; Magon, L.; Tomat, G.; Portanova, R. Radiochim. Acta. 1972, 17, 28.
- (99) Kraus, K. A.; Dam, J. R. In The Transuranium Elements; Seaborg, G. T., Katz, J. J., Manning, W. M., Eds.; McGraw-Hill: New York, 1949; Vols. IV-14B, p 466.
 (100) Lierse, Ch. Ph.D. Thesis, Institut für Radiochemie, Technische
- Universität München, 1985; Report RCM 02286, Technische Universität München, 1986.
- (101) Kim, J. I.; Kanellakopulos, B. Radiochim. Acta 1989, 48, 145.
- (102) Pazukhin, E. M.; Kudryavtsev, E. G. Radiokhimiya 1990, 32, 18.
- (103) Bennett, D. A.; Hoffman, D.; Nitsche, H.; Russo, R. E.; Torres, R. A.; Baisden, P. A.; Andrews, J. E.; Palmer, C. E. A.; Silva, R. J. Radiochim. Acta 1992, 56, 15.
- (104) Kim, J. I.; Bernkopf, M.; Lierse, C.; Koppold, F. In Geochemical Behavior of Disposed Radioactive Waste; ACS Symposium Series 246; American Chemical Society: Washington, DC, 1984; Chapter 7.
- (105) Pashalidis, I.; Runde, W.; Kim, J. I. Radiochim. Acta 1993, 63,
- (106) Okajima, S.; Reed, D. T.; Mazer, J. J.; Sabau, C. A. Mater. Res. Soc. Symp. Proc. 1990, 176, 583. Okajima, S.; Reed, D. T.; Beitz, J. V.; Sabau, C. A.; Bowers, D.
- (107) . Radiochim. Acta 1991, 53, 111.
- (108) Madic, C.; Begun, G. M.; Hobart, D. E.; Hahn, R. L. Inorg. Chem. 1984, 23, 1914.
- (109) Wimmer, H.; Klenze, R.; Kim, J. I. Radiochim. Acta 1992, 56, 79.
- (110) Stumm, W.; Morgan, J. J. Aquatic Chemistry; John Wiley & Sons: New York, 1981.
- (111) Perrin, D. D. Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution; Pergamon Press: Oxford, 1982; Vol. 29.
- (112) Palmer, D. A.; Van Eldik, R. Chem. Rev. 1983, 83, 651.
 (113) Bagnall, K. W. In Gmelin Handbook of Inorganic Chemistry, Supplement Volume C13; Springer-Verlag: Berlin, 1983; p 1. [114] Frankuchen, I. Z. Krist. 1935, 91, 473.
- 1115) Burns, J. H. In Chemistry of the Actinide Elements; Katz, J. J., Seaborg, G. T., Morss, L. R., Eds.; Chapman and Hall: London, 1986; Vol. 2, p 1417.
 116) Musikas, C.; Burns, J. H. In Transplutonium 1975; Müller, W.,
- Linder, R., Eds.; North-Holland Publishing Company: Amster-

- (117) Frondel, C.; Meyrowitz, R. Am. Mineral. 1956, 41, 127.
- (118) Warren, I. H.; Finlayson, M. J. J. Appl. Chem. 1963, 13, 101.
- (119) Cejka, J. Chem. Listy 1964, 50, 124.
- Cejka, J.; Urbanec, Z. Collect. Czech. Chem. Commun. 1973, 38, (120)2327.
- (121) Sahoo, B.; Patnaik, D. Nature 1960, 185, 683
- (122) Walenta, K. Schweiz. Mineral. Petrogr. Mitt. 1976, 56, 167.
- (123) Cromer, D. T.; Harper, P. E. Acta. Crystallogr. 1955, 8, 847.
 (124) Grenthe, I.; Riglet, C.; Vitorge, P. Inorg. Chem. 1986, 25, 1679.
- (125) Gel'man, A. D.; Gorbenko-Germanov, J. S.; Klimov, V. D. Zh. Neorg. Khim. 1966, 11, 516.
- (126) Navratil, J. D.; Bramlet, H. L. J. Inorg. Nucl. Chem. 1973, 35, 157.
- (127) Grenthe, I.; Robouch, P.; Vitorge, P. J. Less-Common Met. 1986, 122. 225.
- (128) Chernyaev, I. I. Complex Compounds of Uranium; Israel Program for Scientific Translations: Jerusalem, 1966.
- (129) Bachelet, M.; Cheylon, E.; Dovis, M.; Goulette, G. Bull. Soc. Chim. Fr. 1952, 19, 55. (130) Weigel, F. In Handbook on the Physics and Chemistry of the
- Actinides; Freeman, A. J.; Keller, C., Eds.; Elsevier Science Publishers, B. V.: Amsterdam, 1985, p 243.
- (131) Bucher, J.; Clark, D.; Edelstein, N.; Hudson, E.; Kaltsoyannis, N.; Lukens, W.; Palmer, P.; Reich, T.; Shuh, D. Manuscript in preparation.
- (132) Aberg, M.; Ferri, D.; Glaser, J.; Grenthe, I. Inorg. Chem. 1983, 22, 3981.
- (133) Ciavatta, L.; Ferri, D.; Grimaldi, M.; Palombari, R.; Salvatore, F. J. Inorg. Nucl. Chem. 1979, 41, 1175.
- (134) Ferri, D.; Grenthe, I.; Salvatore, F. Acta Chem. Scand. 1981, A35, 165.
- (135) Banyai, I.; Glaser, J.; Grenthe, I.; Micskei, K.; Szabo, Z.; Toth, . Program and Abstracts; Inorganic Reaction Mechanisms Meeting 93, Wiesbaden-Naurod, Germany, Dec. 13-15, 1993.
- (136) Ross, V. Am. Mineral. 1955, 40, 515.
- Axelrod, J.; Grimaldi, F.; Milton, C.; Murata, C. J. Am. Mineral. (137)1949, 34, 274
- Meyrowitz, R. U.S. Geol. Surv. Prof. Pap. 1962, 99, No. 450-c. (138)

A LIBK

- (139) Walenta, K. Schweiz. Mineral. Petrogr. Mitt. 1972, 52, 93.
- (140) Grenthe, I.; Lagerman, B. Acta Chem. Scand. 1991, 45, 122.
- (141) Grenthe, I.; Ferri, D.; Salvatore, F.; Riccio, G. J. Chem. Soc., Dalton Trans. 1984, 2439.
- (142) Maya, L. Inorg. Chem. 1982, 21, 2895.
- (143) Bidoglio, G.; Cavalli, P.; Grenthe, I.; Omenetto, N.; Qi, P.; Tanet, G. Talanta 1991, 38, 433.
- (144)Clark, D. L.; Palmer, P. D. In Migration '93; Charleston, SC, USA, 1993; Abstract PA5-1.
- (145) Ferri, D.; Glaser, J.; Grenthe, I. Inorg. Chim. Acta 1988, 148,
- (146) Ellinger, F. H.; Zachariasen, W. H. J. Phys. Chem. 1954, 58, 405.
- (147) Ciavatta, L.; Ferri. D.; Grenthe, I.; Salvatore, F. Inorg. Chem. 1981, 20, 463. (148) Teo, B. K. EXAFS; Basic Principles and Data Analysis;
- Springer-Verlag: Berlin, 1986.
- (149) Ullman, W. J.; Schreiner, F. Radiochim. Acta 1988, 43, 37.
- (150) Maya, L. Inorg. Chem. 1984, 23, 3926.
 (151) Robouch, P.; Vitorge, P. Inorg. Chim. Acta 1987, 140, 239.
 (152) Sullivan, J. C.; Woods, M.; Bertrand, P. A.; Choppin, G. R.
- Radiochim. Acta 1982, 31, 45. (153) Nguyen-Trung, C.; Begun, G. M.; Palmer, D. A. Inorg. Chem. 1992, 31, 5280.
- (154) Madic, C.; Hobart, D. E.; Begun, G. M. Inorg. Chem. 1983, 22, 1494.
- (155) Basile, L. J.; Ferraro, J. R.; Mitchell, M. L.; Sullivan, J. C. Appl. Spectrosc. 1978, 32, 535.
- (156) Clark, D. L.; Palmer, P. D.; Neu, M. P. Manuscript in preparation.
- (157) Lincoln, S. F. Pure Appl. Chem. 1979, 51, 2059
- (158) Tomiyasu, H.; Fukutomi, H. Bull. Res. Lab. Nucl. React. (Tokyo Inst. Technol.) 1982, 7.
- (159) Brücher, E.; Glaser, J.; Toth, I. Inorg. Chem. 1991, 30, 2239.
- (160) (a) Clark, D. L.; Hobart, D. E.; Palmer, P. D.; Sullivan, J. C.;
 - Stout, B. E. J. Alloys Compd. 1993, 193, 94. (b) Clark, D. L.; Hobart, D. E.; Neu, M. P.; Palmer, P. D.; Sullivan, J. C.; Stout, B. E. Manuscript in preparation.
- (161) Stout, B. E.; Choppin, G. R.; Sullivan, J. C. In *Transactinide Elements. A Half Century.*; Morss, L. R., Fuger, J., Eds.; American Chemical Society: Washington, DC, 1992; Chapter 23, p 225.
- (162) U.S.D.O.E. Office of Civilian Radioactive Waste Management
- Washington, DC Report/DOE/RW-1099, 1988. (163) Glassley, W. E. Lawrence Livermore National Laboratory, Report UCRL-53726, 1986.
- (164) Volkov, Y. F.; Visyashcheva, G. I.; Tomilin, S. V.; Spiryakov, V.
- I.; Kapshukov, I. I.; Rykov, A. G. Radiokhimiya 1979, 21, 673. (165) Volkov, Y. F.; Tomilin, S. V.; Visyashcheva, G. I.; Kapshukov, I. I. Radiokhimiya 1979, 21, 668.
- (166) Volkov, Y. F.; Kapshukov, I. I.; Visyashcheva, G. I.; Yakovlev, G. N. Radiokhimiya 1974, 16, 863

48 Chemical Reviews, 1995, Vol. 95, No. 1

- (167) Coleman, J. S.; Keenan, T. K.; Jones, L. H.; Carnall, W. T.; (10) Volcenan, J. R. A. Inorg. Chem. 1963, 2, 58.
 (168) Keenan, T. K. Inorg. Chem. 1965, 4, 1500.
 (169) Keenan, T. K.; Kruse, F. H. Inorg. Chem. 1964, 3, 1231.
 (170) Nigon, J. P.; Penneman, R. A.; Staritzky, E.; Keenan, T. K.;

- Asprey, L. B. J. Phys. Chem. 1954, 58, 403.
- (171) Simakin, G. A.; Volkov, Y. F.; Visyashcheva, G. I.; Kapshukov, I. I.; Baklanova, P. F.; Yakovlev, G. N. Radiokhimiya 1974, 16, 859
- (172) Volkov, Y. F.; Visyashcheva, G. I.; Tomilin, S. V.; Kapshukov, I. I.; Rukov, A. G. Radiokhimiya 1981, 23, 243.
- (173) Volkov, Y. F.; Visyashcheva, G. I.; Tomilin, S. V.; Kapshukov, I. I.; Rykov, A. G. Radiokhimiya 1981, 23, 248.
- (174) Gorbeko-Germanov, D. S.; Klimov, V. C. Russ. J. Inorg. Chem. 1966, 11, 280.
- (175) Volkov, Y. F.; Visyashcheva, G. I.; Tomilin, S. V.; Kapshukov, I. I.; Rykov, A. G. Radiokhimiya 1981, 23, 254.
- (176) Clark, D. L.; Hobart, D. E.; Palmer, P. D. Research in progress.
 (177) Wester, D. W.; Sullivan, J. C. Inorg. Chem. 1980, 19, 2838.
- (178) Wester, D. W.; Sullivan, J. C. J. Inorg. Nucl. Chem. 1981, 43, 2919.
- (179) Wester, D. W.; Sullivan, J. C. Radiochem. Radioanal. Lett. 1983, 57, 35.
- (180) Ferri, D.; Grenthe, I.; Salvatore, F. Inorg. Chem. 1983, 22, 3162.
- (181) Riglet, C. Ph.D. Thesis, l'Univesite Paris 6 and Centre d'Etudes Necléaires de Fontenay-aux-Roses, 1989; also as Commissariat à l'Energie Atomique, Gif-sur-Yvette, France, Report CEA-R-5535, 1990.
- (182) Bourges, J. Y.; Guillaume, B.; Koehly, G.; Hobart, D. E.; Peterson, J. R. *Inorg. Chem.* **1983**, 22, 1179.
 (183) Felmy, A. R.; Rai, D.; Fulton, R. W. *Radiochim. Acta* **1990**, 50,
- 193.
- (184) Nitsche, H.; Standifer, E. M.; Silva, R. J. Lanthanide Actinide Res. 1990, 3, 203.
- Runde, W. Ph.D. Thesis, Institut für Radiochemie, Technische (185)Universität München, 1993; also as Technische Universität München, Report RCM 01094, 1994.
- (186) Bidoglio, G.; Tanet, G.; Chatt, A. Radiochim. Acta 1985, 38, 21.
 (187) Bagnall, K. W. In Gmelin Handbook of Inorganic Chemistry,
- Supplement Volume C7; Springer-Verlag: Berlin, 1988; p 1.
- (188) Golovnya, V. A.; Bolotova, G. T. Russ. J. Inorg. Chem. 1961, 6, 1256.
- Chernyaev, I. I.; Golovnya, V. A.; Molodkin, A. K. Russ. J. Inorg. (189)Chem. 1958, 3, 100.
- Dervin, J.; Faucherre, J.; Herpin, P. Bull. Soc. Chim. Fr. 1973, (190)7, 2634.
- (191) Dervin, J.; Faucherre, J. Bull. Soc. Chim. Fr. 1973, 3, 2930.
- (192) Voliotis, S.; Fromage, F.; Faucherre, J.; Dervin, J. Rev. Chim. Minér. 1977, 14, 441.

- Minér. 1977, 14, 441. (193) Voliotis, P. S.; Rimsky, E. A. Acta Crystallogr. 1975, B31, 2615. (194) Voliotis, P. S.; Rimsky, E. A. Acta Crystallogr. 1975, B31, 2612. (195) Volitois, P. S. Acta Crystallogr. 1979, B35, 2899. (196) Marsh, R. E.; Herbstein, F. H. Acta Crystallogr. 1988, B44, 77. (197) Gel'man, A. D.; Zaitsev, L. M. Zh. Neorgan. Khim. 1958, 3, 1304. (198) Gel'man, A. D.; Zaitsev, L. M. Zh. Neorgan. Khim. 1958, 3, 1551. (199) Ueno, K.; Hoshi, M. J. Inorg. Nucl. Chem. 1970, 32, 381. (200) Yamnova, N. A.: Pushcharovskii. D. Y.; Voloshin, A. V. Sov. Phys.
- Yamnova, N. A.; Pushcharovskii, D. Y.; Voloshin, A. V. Sov. Phys. (200)Dokl. 1990, 35, 12.
- (201)João, A.; Bigot, S.; Fromage, F. Bull. Soc. Chim. Fr. 1987, 1, 42.
- (202)Östhols, E.; Bruno, J.; Grenthe, I. Geochim. Cosmochim. Acta 1994, 58, 613.
- Bruno, J. Marine Chem. 1990, 30, 231. (203)
- (204)Ciavatta, L.; Ferri, D.; Grenthe, I.; Salvatore, F.; Spahiu, K. Inorg. Chem. 1983, 22, 2088.
- Bruno, J.; Grenthe, I.; Robouch, P. Inorg. Chim. Acta 1989, 158, (205)221.

- (206) Pratopo, M. I.; Moriyama, H.; Higashi, K. Radiochim. Acta 1990, 51, 27.
- (207) Moriyama, H.; Pratopo, M. I.; Higashi, K. Sci. Total Environ. 1989, 83, 227
- (208) Silva, R. J. Division of Nuclear Chemistry and Technology. Book of Abstracts, 189th American Chemical Society Meeting; Miami Beach, FL, Spring 1985; American Chemical Society: Washington, DC, 1985.
- (209) Hobart, D. E.; Palmer, P. D.; Newton, T. W. The Carbonate Complexation of Plutonium(IV). Los Alamos National Laboratory, Report LA-UR-86-968, 1986.
- (210) Yamaguchi, T.; Sakamoto, Y.; Ohnuki, T. In MIGRATION '93; Charleston, SC, 1993.
- (211) Keller, C.; Fang, D. Radiochim. Acta 1969, 11, 123.
- (212) Runde, W.; Meinrath, G.; Kim, J. I. Radiochim. Acta 1992, 59, 93.
- (213) Standifer, E. M.; Nitsche, H. Lanthanide Actinide Res. 1988, 2, 383.
- (214) Dedov, V. B.; Volkov, V. V.; Gvozdev, B. A.; Ermakov, V. A.; Lebedev, I. A.; Razbiitnoi, V. M.; Trukhlaev, P. S.; Chuburkov, Y. T.; Yakovlev, G. N. Radiokhimiya 1965, 7, 453.
- (215) Nitsche, H.; Standifer, E. M.; Silva, R. J. Radiochim. Acta 1989, 46, 185
- (216) Meinrath, G.; Kim, J. I. Radiochim. Acta 1991, 53, 29.
- (217) Giffaut, E.; Vitorge, P. Mater. Res. Soc. Symp. Proc. 1993, 294, 747
- (218) Bernkopf, M.; Kim, J. I. Institute für Radiochemie, Technische Universität München, Report RCM 02884. Referenced in: Kim, J. I. Handbook of the Chemistry and Physics of the Actinides; Freeman, A. J., Keller, C., Eds.; Elsevier Science Publishers, B. V.: North-Holland, 1986; Chapter 8, Table 3 on page 428.
- (219) Tam, A. C. Rev. Mod. Phys. 1986, 58, 381.
- (220) Schrepp, W.; Stumpe, R; Kim, J. I.; Walther, H. Appl. Phys. B 1983, 32, 207.
- (221) Beitz, J. V.; Bowers, D. L.; Doxtader, M. M.; Maroni, B. A.; Reed. D. T. Radiochim. Acta 1988, 44/45, 87.
- (222) Klenze, R.; Kim, J. I. Radiochim. Acta 1988, 44/45, 77.
- (223) Pollard, P. M.; Leizers, M.; McMillan, J. W.; Phillips, G.; Thomason, H. P.; Eqart, F. T. Radiochim. Acta 1988, 44/45, 95. (224) Klenze, R.; Kim, J. I.; Wimmer, H. Radiochim. Acta 1991, 52/
- 53, 97. (225) Berg, J. M.; Tait, C. D.; Morris, D. E.; Woodruff, W. H. Mater.
- Res. Soc. Symp. Proc. 1991, 212, 531.
- (226) Russo, R. E.; Rojas, D.; Robouch, P.; Silva, R. J. Rev. Sci. Instrum. 1990, 61, 3729.
- (227) Kobashi, A.; Choppin, G. R.; Morse, J. W. Radiochim. Acta 1988. 43, 211.
- (228) Moulin, V.; Tits, J.; Moulin, C.; Decambox, P.; Mauchien, P.; de Ruty, O. Radiochim. Acta 1992, 58/59, 121.
- (229) Moulin, C.; Delorme, N.; Berthoud, T.; Mauchien, P. Radiochim. Acta 1988, 44/45, 103.
- (230) Berthoud, T.; Mauchien, P.; Omenetto, N.; Rossi, G. Anal. Chim. Acta 1983, 153, 265.
- (231) Rojas, D.; Silva, R. J.; Spear, J. D.; Russo, R. E. Anal. Chem. 1991, 1927.
- (232) Berthoud, T.; Decambox, P.; Kirsch, B.; Mauchien, P.; Moulin. C. Anal. Chem. 1988, 60, 1296.
- (233)Trautmann, N. In Transactinide Elements. A Half Century: Morss, L. R., Fuger, J., Eds.; American Chemical Society: Washington, D.C., 1992; Chapter 16, p 159.
- (234) Myasoedov, B. F.; Lebedev, I. A. J. Radioanal. Nucl. Chem. 1991. 147, 5.

CR940116B

Clark et al.

2

2.

2

2

Author to Present a S- 751 21 1

- - 2.4
 - - - 2
 - 3. N

3.1

3.2

3.3

3.4

3.5

3.6

4. A(5. Re

1. Intro

This re electron solutions solar lig water pu and is si electroch